Responder
Here are the factored forms of the given expressions:
a) \( x^{2} - 2x = x(x - 2) \)
b) \( x^{2} - 4 = (x - 2)(x + 2) \)
c) \( x^{2} + 2x - 15 = (x + 5)(x - 3) \)
d) \( 6x^{2} - 2a x - 3x y + a y = (3x - a)(2x - y) \)
e) \( 27x^{3} + y^{3} = (3x + y)(9x^{2} - 3xy + y^{2}) \)
f) \( 54x^{3} - 16 = 2(3x - 2)(9x^{2} + 6x + 4) \)
Solución
Certainly! Let's factor each of the given expressions step by step.
---
### a) \( x^{2} - 2x \)
**Factoring:**
\[ x^{2} - 2x = x(x - 2) \]
---
### b) \( x^{2} - 4 \)
**Factoring:**
This is a **difference of squares**, which can be factored as:
\[ x^{2} - 4 = (x - 2)(x + 2) \]
---
### c) \( x^{2} + 2x - 15 \)
**Factoring:**
We look for two numbers that multiply to **-15** and add to **2**. These numbers are **5** and **-3**.
\[ x^{2} + 2x - 15 = (x + 5)(x - 3) \]
---
### d) \( 6x^{2} - 2a x - 3x y + a y \)
**Factoring:**
Group the terms to factor by grouping:
\[
\begin{align*}
6x^{2} - 2a x - 3x y + a y &= (6x^{2} - 2a x) + (-3x y + a y) \\
&= 2x(3x - a) - y(3x - a) \\
&= (3x - a)(2x - y)
\end{align*}
\]
---
### e) \( 27x^{3} + y^{3} \)
**Factoring:**
This is a **sum of cubes**. Recall that \( A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2}) \).
Let \( A = 3x \) and \( B = y \):
\[
\begin{align*}
27x^{3} + y^{3} &= (3x)^{3} + y^{3} \\
&= (3x + y)\left((3x)^{2} - (3x)(y) + y^{2}\right) \\
&= (3x + y)(9x^{2} - 3xy + y^{2})
\end{align*}
\]
---
### f) \( 54x^{3} - 16 \)
**Factoring:**
First, factor out the greatest common factor (GCF), which is **2**:
\[
54x^{3} - 16 = 2(27x^{3} - 8)
\]
Now, recognize that \( 27x^{3} - 8 \) is a **difference of cubes**:
\[
27x^{3} - 8 = (3x)^{3} - 2^{3} = (3x - 2)\left((3x)^{2} + (3x)(2) + 2^{2}\right) = (3x - 2)(9x^{2} + 6x + 4)
\]
Combining both steps:
\[
54x^{3} - 16 = 2(3x - 2)(9x^{2} + 6x + 4)
\]
---
### **Summary of Factored Forms:**
a) \( x^{2} - 2x = \mathbf{x(x - 2)} \)
b) \( x^{2} - 4 = \mathbf{(x - 2)(x + 2)} \)
c) \( x^{2} + 2x - 15 = \mathbf{(x + 5)(x - 3)} \)
d) \( 6x^{2} - 2a x - 3x y + a y = \mathbf{(3x - a)(2x - y)} \)
e) \( 27x^{3} + y^{3} = \mathbf{(3x + y)(9x^{2} - 3xy + y^{2})} \)
f) \( 54x^{3} - 16 = \mathbf{2(3x - 2)(9x^{2} + 6x + 4)} \)
---
If you have any further questions or need additional explanations, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución