Pregunta
upstudy study bank question image url

a) \( x^{2}-2 x \) b) \( x^{2}-4 \) c) \( x^{2}+2 x-15 \) d) \( 6 x^{2}-2 \cdot a x-3 x y+a y \) e) \( 27 x^{3}+y^{3} \) f) \( 54 x^{3}-16 \)

Ask by Ball Chan. in South Africa
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the factored forms of the given expressions: a) \( x^{2} - 2x = x(x - 2) \) b) \( x^{2} - 4 = (x - 2)(x + 2) \) c) \( x^{2} + 2x - 15 = (x + 5)(x - 3) \) d) \( 6x^{2} - 2a x - 3x y + a y = (3x - a)(2x - y) \) e) \( 27x^{3} + y^{3} = (3x + y)(9x^{2} - 3xy + y^{2}) \) f) \( 54x^{3} - 16 = 2(3x - 2)(9x^{2} + 6x + 4) \)

Solución

Certainly! Let's factor each of the given expressions step by step. --- ### a) \( x^{2} - 2x \) **Factoring:** \[ x^{2} - 2x = x(x - 2) \] --- ### b) \( x^{2} - 4 \) **Factoring:** This is a **difference of squares**, which can be factored as: \[ x^{2} - 4 = (x - 2)(x + 2) \] --- ### c) \( x^{2} + 2x - 15 \) **Factoring:** We look for two numbers that multiply to **-15** and add to **2**. These numbers are **5** and **-3**. \[ x^{2} + 2x - 15 = (x + 5)(x - 3) \] --- ### d) \( 6x^{2} - 2a x - 3x y + a y \) **Factoring:** Group the terms to factor by grouping: \[ \begin{align*} 6x^{2} - 2a x - 3x y + a y &= (6x^{2} - 2a x) + (-3x y + a y) \\ &= 2x(3x - a) - y(3x - a) \\ &= (3x - a)(2x - y) \end{align*} \] --- ### e) \( 27x^{3} + y^{3} \) **Factoring:** This is a **sum of cubes**. Recall that \( A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2}) \). Let \( A = 3x \) and \( B = y \): \[ \begin{align*} 27x^{3} + y^{3} &= (3x)^{3} + y^{3} \\ &= (3x + y)\left((3x)^{2} - (3x)(y) + y^{2}\right) \\ &= (3x + y)(9x^{2} - 3xy + y^{2}) \end{align*} \] --- ### f) \( 54x^{3} - 16 \) **Factoring:** First, factor out the greatest common factor (GCF), which is **2**: \[ 54x^{3} - 16 = 2(27x^{3} - 8) \] Now, recognize that \( 27x^{3} - 8 \) is a **difference of cubes**: \[ 27x^{3} - 8 = (3x)^{3} - 2^{3} = (3x - 2)\left((3x)^{2} + (3x)(2) + 2^{2}\right) = (3x - 2)(9x^{2} + 6x + 4) \] Combining both steps: \[ 54x^{3} - 16 = 2(3x - 2)(9x^{2} + 6x + 4) \] --- ### **Summary of Factored Forms:** a) \( x^{2} - 2x = \mathbf{x(x - 2)} \) b) \( x^{2} - 4 = \mathbf{(x - 2)(x + 2)} \) c) \( x^{2} + 2x - 15 = \mathbf{(x + 5)(x - 3)} \) d) \( 6x^{2} - 2a x - 3x y + a y = \mathbf{(3x - a)(2x - y)} \) e) \( 27x^{3} + y^{3} = \mathbf{(3x + y)(9x^{2} - 3xy + y^{2})} \) f) \( 54x^{3} - 16 = \mathbf{2(3x - 2)(9x^{2} + 6x + 4)} \) --- If you have any further questions or need additional explanations, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the expression \( x^{2}-2x \) is a quadratic that can be factored into \( x(x-2) \)? This reveals its roots at \( x = 0 \) and \( x = 2 \), highlighting the intersection points on a graph and how it opens upwards, showcasing the parabola’s beauty in symmetry! Now, speaking of \( 27x^{3} + y^{3} \), this expression can be recognized as a sum of cubes, which factors into \( (3x + y)(9x^{2} - 3xy + y^{2}) \). This neat factorization helps in solving equations and understanding the relationships between variables more clearly, making algebra not just functional but also delightfully structural!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad