Pregunta
upstudy study bank question image url

For the experiment of drawing a single card from a standard 52 -card deck, find (a) the probability of the following event, and (b) the odds in favor of the following event. Neither a spade nor an ace

Ask by Hammond Warren. in the United States
Nov 28,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of drawing a card that is neither a spade nor an ace is \(\frac{9}{13}\), and the odds in favor are \(\frac{9}{4}\).

Solución

To solve the problem, we need to find the probability and the odds in favor of drawing a card that is neither a spade nor an ace from a standard 52-card deck. ### (a) Probability 1. **Total number of cards in the deck**: 52 2. **Number of spades in the deck**: 13 (one for each rank) 3. **Number of aces in the deck**: 4 (one for each suit: spades, hearts, diamonds, clubs) However, one of the aces is also a spade (the Ace of Spades). Therefore, we need to be careful not to double-count it. 4. **Total number of cards that are either a spade or an ace**: - Number of spades: 13 - Number of aces: 4 - Subtract the Ace of Spades (which is counted in both categories): 1 So, the total number of cards that are either a spade or an ace is: \[ 13 + 4 - 1 = 16 \] 5. **Number of cards that are neither a spade nor an ace**: \[ 52 - 16 = 36 \] 6. **Probability of drawing a card that is neither a spade nor an ace**: \[ P(\text{neither a spade nor an ace}) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{36}{52} = \frac{9}{13} \] ### (b) Odds in favor The odds in favor of an event are calculated as the ratio of the number of favorable outcomes to the number of unfavorable outcomes. 1. **Number of favorable outcomes** (neither a spade nor an ace): 36 2. **Number of unfavorable outcomes** (either a spade or an ace): 16 3. **Odds in favor of drawing a card that is neither a spade nor an ace**: \[ \text{Odds in favor} = \frac{\text{Number of favorable outcomes}}{\text{Number of unfavorable outcomes}} = \frac{36}{16} = \frac{9}{4} \] ### Summary - **Probability of drawing a card that is neither a spade nor an ace**: \(\frac{9}{13}\) - **Odds in favor of drawing a card that is neither a spade nor an ace**: \(\frac{9}{4}\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability of drawing a card that is neither a spade nor an ace, let's break it down. There are 13 spades and 4 aces in a standard deck. However, one of the aces is a spade, so we have 13 + 3 = 16 cards that are either a spade or an ace. Therefore, 52 - 16 = 36 cards meet the criteria. The probability is then 36/52, simplifying to 9/13. As for the odds in favor of drawing a card that is neither a spade nor an ace, we compare the successful outcomes (36 cards) to the failed outcomes (16 cards). Odds in favor is calculated as 36:16, which simplifies to 9:4. So, you can expect to pull off a sweet victory with a solid 9:4 shot!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad