Pregunta
upstudy study bank question image url

Mimi is planning to save for the next 48 months in order to raise a deposit to buy a flat She plans to save \( \$ 300 \) this month and each successive month thereafter, to save an extra \( \$ 5 \) compared to the previous month. a) Find the amount she will save on the twelfth month. b) Find the total amount she will save at the end of the 48 months. Emmanuel is also planning to save for the next 48 months in order to buy a car. He plans to save \( \$ \) a this month and each successive month thereafter, to save an extra \( \$ 15 \) compared to the previous month. c) Find the value of \( a \), if Emmanuel saves the same amount of money as Anita does in the next 48 months.

Ask by Turnbull Mcguire. in Ghana
Feb 15,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) Mimi will save $355 in the 12th month. b) Mimi will save a total of $20,040 over 48 months. c) Emmanuel needs to start with $65 in the first month to save the same amount as Mimi over 48 months.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To find out how much Mimi saves in the twelfth month, we can use the formula for an arithmetic sequence. The first month she saves $300, and she increases her savings by $5 each month. Thus, in the twelfth month, she saves: \( 300 + (12 - 1) \times 5 = 300 + 55 = \$355. \) For the total amount saved over 48 months, we can calculate the total of the arithmetic sequence where \( n = 48\), the first term \( a = 300 \), and the last term \( l \) is: \( l = 300 + (48 - 1) \times 5 = 300 + 235 = 535. \) The sum \( S \) of the first \( n \) terms is given by: \( S_n = \frac{n}{2} \times (a + l) \) So, \( S_{48} = \frac{48}{2} \times (300 + 535) = 24 \times 835 = \$20,040. \) Now, for Emmanuel, since he wants to save the same total amount in 48 months as Mimi, we need to set his annual increase and the resulting total equal to Mimi's. Let Emmanuel's first month's saving be \( a \). The amount he saves in the 48th month will be: \( a + (48 - 1) \times 15 = a + 705. \) His total savings can be calculated in a similar manner: \( S_{48} = \frac{48}{2} \times (a + (a + 705)) = 24 \times (2a + 705) = 48a + 16,920. \) Equating Emmanuel's savings to Mimi's, we get: \( 48a + 16,920 = 20,040. \) Solving for \( a \): \( 48a = 20,040 - 16,920 = 3,120 \) \( a = \frac{3,120}{48} = 65. \) So Emmanuel's first month's saving should be \( a = \$65. \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad