Responder
The answers are:
(3) (√3)/2
(4) 1
(5) 1
(6) 2
Solución
We will simplify each of the four expressions step‐by‐step.
─────────────────────────────
Step (3): Evaluate
[cos²(165°)]⁄[cos(60°)] – cos²(97°) – cos²(727°).
1. Notice that cos 60° = ½ so
cos²(165°)/cos60° = cos²(165°)/(½) = 2·cos²(165°).
2. Write the angles in terms of acute angles:
• 165° = 180° – 15° ⟹ cos(165°) = –cos15° ⟹ cos²(165°) = cos²15°.
• 97° = 90° + 7° ⟹ cos(97°) = –sin7° ⟹ cos²(97°) = sin²7°.
• 727° differs by full rotations. Since 727° – 720° = 7°, we have
cos²(727°) = cos²7°.
3. The expression becomes:
2·cos²15° – sin²7° – cos²7°.
But recall that sin²7° + cos²7° = 1.
Thus, the expression is 2·cos²15° – 1.
4. Recognize the double‐angle formula:
2·cos²15° – 1 = cos30°.
Since cos30° = (√3)/2, the final answer for (3) is (√3)/2.
─────────────────────────────
Step (4): Evaluate
[cos(204°)·tan(315°) + 2·cos(156°)·sin²(348°)] ÷ [sin²(–5°) + sin²(85°) – sin²(24°)].
Numerator:
1. For cos(204°): 204° = 180° + 24° so cos(204°) = –cos24°.
2. For tan(315°): 315° = 360° – 45° so tan(315°) = –tan45° = –1.
Then, cos(204°)·tan(315°) = (–cos24°)(–1) = cos24°.
3. For cos(156°): 156° = 180° – 24° so cos(156°) = –cos24°.
4. For sin(348°): 348° = 360° – 12° so sin(348°) = –sin12°, and sin²(348°) = sin²12°.
Then, 2·cos(156°)·sin²(348°) = 2·(–cos24°)·sin²12° = –2·cos24°·sin²12°.
5. The entire numerator becomes:
cos24° – 2·cos24°·sin²12° = cos24°·(1 – 2 sin²12°).
6. Recognize that 1 – 2 sin²x = cos(2x). Here, with x = 12°, we have:
1 – 2 sin²12° = cos24°.
Thus the numerator equals:
cos24° · cos24° = cos²24°.
Denominator:
1. Note that sin²(–5°) = sin²5° because sine squared is even.
2. For sin(85°): 85° = 90° – 5° so sin85° = cos5°, and sin²85° = cos²5°.
3. Then, the denominator is:
sin²5° + cos²5° – sin²24° = 1 – sin²24°,
since sin²5° + cos²5° = 1.
4. But 1 – sin²24° = cos²24°.
Thus, the entire fraction is:
cos²24° / cos²24° = 1.
─────────────────────────────
Step (5): Evaluate
sin(140°) – cos(220°)·tan(–155°).
1. Write the angles in familiar forms:
• 140° = 180° – 40° ⟹ sin140° = sin40°.
• 220° = 180° + 40° ⟹ cos220° = –cos40°.
• tan(–155°) = –tan155° (since tan is odd).
• Also, 155° = 180° – 25° ⟹ tan155° = –tan25°, so
tan(–155°) = –(–tan25°) = tan25°.
2. Substitute these results back:
sin(140°) – cos(220°)·tan(–155°) = sin40° – [–cos40°]·tan25° = sin40° + cos40°·tan25°.
3. Write tan25° as sin25°/cos25°:
This becomes sin40° + (cos40°·sin25°)/cos25°.
4. Combine over a common denominator:
= [sin40°·cos25° + cos40°·sin25°] / cos25°.
The numerator is recognizable as sin(40° + 25°) by the sine addition formula:
sin40°·cos25° + cos40°·sin25° = sin65°.
5. Also note cos25° = sin(90°–25°) = sin65°.
Thus the fraction is sin65° / sin65° = 1.
─────────────────────────────
Step (6): Evaluate
[cos⁴(190°) – sin⁴(–10°)] ÷ [cos(55°)·cos(325°)].
1. Simplify the numerator:
• 190° = 180° + 10° ⟹ cos190° = –cos10° so cos⁴190° = (–cos10°)⁴ = cos⁴10°.
• sin(–10°) = –sin10° so sin⁴(–10°) = (–sin10°)⁴ = sin⁴10°.
Thus, the numerator is cos⁴10° – sin⁴10°.
2. Factor the difference of two fourth powers as a difference of squares:
cos⁴10° – sin⁴10° = (cos²10°)² – (sin²10°)² = (cos²10° – sin²10°)(cos²10° + sin²10°).
Since cos²10° + sin²10° = 1, this simplifies to:
cos²10° – sin²10°.
But cos²10° – sin²10° = cos20° (by the double‐angle formula).
3. Now simplify the denominator:
• 325° = 360° – 35° ⟹ cos325° = cos35°.
So the denominator is cos55°·cos35°.
Using the product-to-sum formula:
cos55°·cos35° = [cos(55° + 35°) + cos(55° – 35°)]/2 = [cos90° + cos20°]/2 = [0 + cos20°]/2 = cos20°/2.
4. Thus the whole expression becomes:
cos20° ÷ (cos20°/2) = 2.
─────────────────────────────
Final Answers:
(3) = (√3)/2
(4) = 1
(5) = 1
(6) = 2
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución