Pregunta
upstudy study bank question image url

Given \[ x^{2}+(k-1) x=-k+2 \] Show that the roots are real and rational for all

Ask by Reyes Cross. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The roots of the equation \(x^{2}+(k-1)x=-k+2\) are real and rational for all values of \(k\).

Solución

Solve the equation \( x^{2}+(k-1)x=-k+2 \). Solve the equation by following steps: - step0: Solve for \(x\): \(x^{2}+\left(k-1\right)x=-k+2\) - step1: Move the expression to the left side: \(x^{2}+\left(k-1\right)x-\left(-k+2\right)=0\) - step2: Remove the parentheses: \(x^{2}+\left(k-1\right)x+k-2=0\) - step3: Expand the expression: \(x^{2}+kx-x+k-2=0\) - step4: Factor the expression: \(\left(x+k-2\right)\left(x+1\right)=0\) - step5: Separate into possible cases: \(\begin{align}&x+k-2=0\\&x+1=0\end{align}\) - step6: Solve the equation: \(\begin{align}&x=-k+2\\&x=-1\end{align}\) The roots of the equation \(x^{2}+(k-1)x=-k+2\) are \(x=-k+2\) and \(x=-1\). To show that the roots are real and rational for all values of \(k\), we need to analyze the nature of the roots. 1. Real roots: The roots are real because they are in the form of \(x=a\) and \(x=b\), where \(a\) and \(b\) are real numbers. 2. Rational roots: The roots are rational because they are in the form of \(x=\frac{p}{q}\), where \(p\) and \(q\) are integers and \(q \neq 0\). In this case, the roots are \(x=-k+2\) and \(x=-1\), which are rational for all values of \(k\). Therefore, the roots of the equation \(x^{2}+(k-1)x=-k+2\) are real and rational for all values of \(k\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if the roots of the quadratic equation \[ x^{2}+(k-1)x + (k-2) = 0 \] are real and rational for all values of \( k \), we can examine the discriminant, \( D \), defined as \[ D = b^2 - 4ac \] where \( a = 1 \), \( b = k - 1 \), and \( c = k - 2 \). Substituting these values in, we get: \[ D = (k-1)^2 - 4 \cdot 1 \cdot (k - 2) \] Calculating the discriminant: \[ D = (k-1)^2 - 4(k - 2) = (k^2 - 2k + 1) - (4k - 8) = k^2 - 2k + 1 - 4k + 8 = k^2 - 6k + 9 \] This simplifies to \[ D = (k-3)^2 \] Since the square of any real number is always non-negative, \( D \geq 0 \). Thus, the roots are indeed real for all values of \( k \). Next, we need to check if the roots are rational. For the roots to be rational, the discriminant \( D \) must be a perfect square. Since \( D = (k-3)^2 \) is always a square (being the square of \( k-3 \)), the roots will be rational for all values of \( k \). In conclusion, the roots of the equation \( x^{2}+(k-1)x + (k-2) = 0 \) are real and rational for all \( k \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad