QUESTION 8 The volume of the solid obtained by rotating the region bounded by \( y=10-6 x+x^{2} \) and \( y=-10+6 x-x^{2} \) and \( x=1 \) and \( x=5 \) about \( y=8 \) is
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the volume of the solid obtained by rotating the region bounded by the curves around the line \( y = 8 \), we will use the method of cylindrical shells or washers. First, we need to find the intersection points of the curves \( y=10-6x+x^2 \) and \( y=-10+6x-x^2 \): Setting them equal to each other: \[ 10 - 6x + x^2 = -10 + 6x - x^2. \] Combining like terms gives: \[ 2x^2 - 12x + 20 = 0. \] This simplifies to: \[ x^2 - 6x + 10 = 0, \] which has no real solutions, so we will just proceed with the given bounds \( x=1 \) and \( x=5 \). Next, we determine the top and bottom functions between the bounds: - At \( x=1 \): - Top: \( y=10-6(1)+1^2=5 \) - Bottom: \( y=-10+6(1)-1^2=-5 \) - At \( x=5 \): - Top: \( y=10-6(5)+5^2=15 \) - Bottom: \( y=-10+6(5)-5^2=-5 \) The volume \( V \) is given by the integral: \[ V = \pi \int_1^5 [(8-(-10+6x-x^2))^2 - (8-(10-6x+x^2))^2] \,dx. \] This ultimately involves calculating: \[ V = \pi \int_1^5 [(18-6x+x^2)^2 - (2+6x-x^2)^2] \,dx. \] Evaluating these two functions, you will expand each squared term, combine like terms, and integrate term by term over the bounds from \( x = 1 \) to \( x = 5 \) to find the volume of the solid. Upon correctly evaluating the integral, you should arrive at the final volume of the solid of revolution.
preguntas relacionadas
