3) \( \lim _{x \rightarrow-5} \frac{x^{2}-25}{(x+5)(x-6)} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate the limit \( \lim _{x \rightarrow-5} \frac{x^{2}-25}{(x+5)(x-6)} \), first notice that the numerator can be factored using the difference of squares: \[ x^2 - 25 = (x - 5)(x + 5) \] Now substitute this into the limit expression: \[ \lim _{x \rightarrow -5} \frac{(x - 5)(x + 5)}{(x + 5)(x - 6)} \] We can cancel the \( (x + 5) \) terms (noting that \( x \neq -5 \) when evaluating the limit): \[ \lim _{x \rightarrow -5} \frac{x - 5}{x - 6} \] Now we can safely substitute \( x = -5 \): \[ \frac{-5 - 5}{-5 - 6} = \frac{-10}{-11} = \frac{10}{11} \] Thus, the limit is: \[ \lim _{x \rightarrow -5} \frac{x^{2}-25}{(x+5)(x-6)} = \frac{10}{11} \]
preguntas relacionadas
