Pregunta
upstudy study bank question image url

If the height that a toy airplane can fly is given by the following expression: \( -3 x^{2}-5 x+9 \). Determine the maximum height that the airplane can fly.

Ask by Mathis Deleon. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The maximum height the toy airplane can fly is 133/12 units, which is approximately 11.08 units.

Solución

We are given the height function:   h(x) = –3x² – 5x + 9 Since this is a quadratic function with a negative coefficient for x² (a = –3), its graph is a downward-opening parabola. Therefore, it has a maximum value at its vertex. Step 1. Find the x-coordinate of the vertex using the formula:   x = –b / (2a) Here, a = –3 and b = –5, so:   x = –(–5) / [2(–3)] = 5 / (–6) = –5/6 Step 2. Find the maximum height by substituting x = –5/6 back into the height function:   h(–5/6) = –3(–5/6)² – 5(–5/6) + 9 First calculate (–5/6)²:   (–5/6)² = 25/36 Now substitute:   h(–5/6) = –3 × (25/36) + (25/6) + 9 Simplify each term:   –3 × (25/36) = –75/36   Convert (25/6) to a fraction with denominator 36: 25/6 = 150/36   Convert 9 = 324/36 Now, combine the terms:   h(–5/6) = (–75 + 150 + 324) / 36 = 399/36 Simplify 399/36 by dividing numerator and denominator by 3:   399 ÷ 3 = 133  and 36 ÷ 3 = 12 Thus,   h(–5/6) = 133/12 Step 3. Write the conclusion: The maximum height that the toy airplane can fly is 133/12. If you prefer a decimal approximation, 133/12 ≈ 11.08. So, the maximum height is 133/12 units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the maximum height of the toy airplane represented by the quadratic equation \( -3x^{2}-5x+9 \), we can use the vertex formula, which gives the x-coordinate of the vertex as \( x = -\frac{b}{2a} \). Here, \( a = -3 \) and \( b = -5 \). Calculating gives us: \[ x = -\frac{-5}{2 \times -3} = \frac{5}{-6} = -\frac{5}{6}. \] Next, we substitute this value back into the original expression to find the maximum height: \[ -\left(3\left(-\frac{5}{6}\right)^{2} + 5\left(-\frac{5}{6}\right) + 9\right). \] Calculating this results in a maximum height of \( 10.25 \). This means the toy airplane can soar to a fantastic height of \( 10.25 \) units! It's important to note that maximizing the height of a quadratic function involves understanding its parabola shape, which opens downwards when the leading coefficient (a) is negative. This dynamic behavior of quadratics can be key in various real-world scenarios, such as predicting projectile motion or optimizing design features in engineering.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad