Given \( P=P_{0} e^{-k t} \) When \( t=36, P=12 \) and when \( t=11 \) then \( P=30 \) Determine the values of the constants \( k \) and \( P_{0} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To determine the constants \( k \) and \( P_{0} \) from the equation \( P = P_{0} e^{-kt} \), we can use the two given points. From the first situation (when \( t = 36 \), \( P = 12 \)): \[ 12 = P_{0} e^{-36k} \tag{1} \] From the second situation (when \( t = 11 \), \( P = 30 \)): \[ 30 = P_{0} e^{-11k} \tag{2} \] Now we can express \( P_{0} \) from both equations: From equation (1): \[ P_{0} = 12 e^{36k} \tag{3} \] From equation (2): \[ P_{0} = 30 e^{11k} \tag{4} \] Now, we can set equations (3) and (4) equal to each other: \[ 12 e^{36k} = 30 e^{11k} \] Dividing both sides by \( e^{11k} \): \[ 12 e^{25k} = 30 \] Rearranging gives: \[ e^{25k} = \frac{30}{12} = 2.5 \] Taking the natural logarithm of both sides: \[ 25k = \ln(2.5) \] \[ k = \frac{\ln(2.5)}{25} \approx \frac{0.9163}{25} \approx 0.03665 \] Now, we can substitute \( k \) back into one of the previous equations to find \( P_{0} \). We can use equation (1): \[ 12 = P_{0} e^{-36 \cdot 0.03665} \] Calculating \( e^{-36 \cdot 0.03665} \): \[ e^{-1.3154} \approx 0.2672 \] Now we can solve for \( P_{0} \): \[ 12 = P_{0} \cdot 0.2672 \] \[ P_{0} \approx \frac{12}{0.2672} \approx 44.91 \] Thus, the values of the constants are: \[ P_{0} \approx 44.91, \quad k \approx 0.03665 \]
