Pregunta
upstudy study bank question image url

Given \( P=P_{0} e^{-k t} \) When \( t=36, P=12 \) and when \( t=11 \) then \( P=30 \) Determine the values of the constants \( k \) and \( P_{0} \).

Ask by Carter Stuart. in India
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The constants are \( k = \frac{\ln 2.5}{25} \) and \( P_{0} = 30 \times e^{\frac{11 \ln 2.5}{25}} \).

Solución

We are given the equation   P = P₀ e^(–k t) with two data points: when t = 36 the population P = 12, and when t = 11 the population P = 30. Step 1. Write the equations for the two data points. For t = 36:   P₀ e^(–36k) = 12       (1) For t = 11:   P₀ e^(–11k) = 30       (2) Step 2. Divide equation (1) by equation (2) to eliminate P₀.   (P₀ e^(–36k))/(P₀ e^(–11k)) = 12/30 Simplify the left-hand side:   e^(–36k + 11k) = e^(–25k) So we have:   e^(–25k) = 12/30 = 2/5 = 0.4 Step 3. Solve for k by taking the natural logarithm of both sides.   ln(e^(–25k)) = ln(0.4)   –25k = ln(0.4) Thus, the value of k is:   k = –(ln 0.4)/25 Since ln(0.4) is negative, k is positive. An alternative form is:   k = (ln(1/0.4))/25 = (ln 2.5)/25 Step 4. Find P₀ using one of the original equations. We use equation (2):   P₀ e^(–11k) = 30   P₀ = 30 e^(11k) Substitute the expression for k:   P₀ = 30 e^(11(ln 2.5)/25) This is the exact expression for P₀. You could also express it as:   P₀ = 30 · 2.5^(11/25) Step 5. (Optional) Approximate the values. First, approximate k:   ln 2.5 ≈ 0.91629   k ≈ 0.91629/25 ≈ 0.03665 Now, approximate P₀:   P₀ = 30 e^(11·0.03665) = 30 e^(0.40315)   e^(0.40315) ≈ 1.4963   P₀ ≈ 30 × 1.4963 ≈ 44.89 Final Answer:   k = (ln 2.5)/25       and  P₀ = 30 e^(11(ln 2.5)/25)   (Approximately, k ≈ 0.03665 and P₀ ≈ 44.89)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the constants \( k \) and \( P_{0} \) from the equation \( P = P_{0} e^{-kt} \), we can use the two given points. From the first situation (when \( t = 36 \), \( P = 12 \)): \[ 12 = P_{0} e^{-36k} \tag{1} \] From the second situation (when \( t = 11 \), \( P = 30 \)): \[ 30 = P_{0} e^{-11k} \tag{2} \] Now we can express \( P_{0} \) from both equations: From equation (1): \[ P_{0} = 12 e^{36k} \tag{3} \] From equation (2): \[ P_{0} = 30 e^{11k} \tag{4} \] Now, we can set equations (3) and (4) equal to each other: \[ 12 e^{36k} = 30 e^{11k} \] Dividing both sides by \( e^{11k} \): \[ 12 e^{25k} = 30 \] Rearranging gives: \[ e^{25k} = \frac{30}{12} = 2.5 \] Taking the natural logarithm of both sides: \[ 25k = \ln(2.5) \] \[ k = \frac{\ln(2.5)}{25} \approx \frac{0.9163}{25} \approx 0.03665 \] Now, we can substitute \( k \) back into one of the previous equations to find \( P_{0} \). We can use equation (1): \[ 12 = P_{0} e^{-36 \cdot 0.03665} \] Calculating \( e^{-36 \cdot 0.03665} \): \[ e^{-1.3154} \approx 0.2672 \] Now we can solve for \( P_{0} \): \[ 12 = P_{0} \cdot 0.2672 \] \[ P_{0} \approx \frac{12}{0.2672} \approx 44.91 \] Thus, the values of the constants are: \[ P_{0} \approx 44.91, \quad k \approx 0.03665 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad