Pregunta
upstudy study bank question image url

If the length of each side of a square is increased by 3 cm , th4e perimeter of the new square is 40 cm more than twice the length of each side of the original square. Find the dimensions of the original square. Each side of the original square measures

Ask by Dunn Dunn. in the United States
Nov 01,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The original square's side length is 14 cm.

Solución

Let's denote the length of each side of the original square as \( x \) cm. Given that the length of each side of the square is increased by 3 cm, the new length of each side of the square is \( x + 3 \) cm. The perimeter of the original square is \( 4x \) cm. The perimeter of the new square is \( 4(x + 3) \) cm. According to the problem, the perimeter of the new square is 40 cm more than twice the length of each side of the original square. This can be expressed as: \[ 4(x + 3) = 2x + 40 \] Now, we can solve this equation to find the dimensions of the original square. Solve the equation by following steps: - step0: Solve for \(x\): \(4\left(x+3\right)=2x+40\) - step1: Expand the expression: \(4x+12=2x+40\) - step2: Move the variable to the left side: \(4x+12-2x=40\) - step3: Subtract the terms: \(2x+12=40\) - step4: Move the constant to the right side: \(2x=40-12\) - step5: Subtract the numbers: \(2x=28\) - step6: Divide both sides: \(\frac{2x}{2}=\frac{28}{2}\) - step7: Divide the numbers: \(x=14\) The solution to the equation is \( x = 14 \) cm. Therefore, each side of the original square measures 14 cm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let the length of each side of the original square be \( x \) cm. The new square's side length will be \( x + 3 \) cm. The perimeter of the original square is \( 4x \) and the perimeter of the new square is \( 4(x + 3) = 4x + 12 \). According to the problem, this new perimeter is also equal to \( 2x + 40 \). Setting these two equal gives us the equation: \[ 4x + 12 = 2x + 40 \] Now, solving for \( x \): 1. Subtract \( 2x \) from both sides: \( 2x + 12 = 40 \) 2. Subtract \( 12 \) from both sides: \( 2x = 28 \) 3. Divide by \( 2 \): \( x = 14 \) Thus, each side of the original square measures 14 cm. To provide some context, the perimeter of a square is simply the total distance around it, which is influenced directly by the length of its sides. Knowing the power of algebra can transform what seems complex into manageable equations, helping to unravel the mystery of geometric relationships. And speaking of squares, they’ve been around for centuries, making appearances in architecture, art, and even mathematics! For example, the ancient Egyptians used them meticulously in the construction of pyramids, and today, squares are foundational in everything from city planning to modern design. Isn’t it amazing how a simple shape can bring together history and mathematics?

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad