Pregunta

QUESTION 1 [17] 1.1 Evaluate: \[ \sum_{n=1}^{20} 3^{n-2} \] 1.2 The following sequence forms a convergent geometric sequence: \( 5 x ; x^{2} ; \frac{x^{3}}{5} ; \ldots \) 1.2.1 Determine the possible value of \( x \). (3) 1.2.2 If \( x=2 \), calculate \( S_{\infty} \). (2) 1.3 The following arithmetic sequence is given: \( 20 ; 23 ; 26 ; 29 ; \ldots ; 101 \) 1.3.1 How many terms are there in this sequence? (2) 1.3.2 The even numbers are removed from the sequence. Calculate the sum of the terms of the remaining sequence; \( \qquad \) .... \( \qquad \) \( \qquad \)

Ask by Johnson Love. in South Africa
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**1.1 Sum Calculation** \[ \sum_{n=1}^{20} 3^{n-2} = \frac{3^{20} - 1}{6} \] **1.2 Geometric Sequence** - **1.2.1 Possible \(x\):** \( -5 < x < 5 \) - **1.2.2 \(S_{\infty}\) when \(x=2\):** \( \frac{50}{3} \) **1.3 Arithmetic Sequence** - **1.3.1 Number of Terms:** 28 - **1.3.2 Sum of Remaining Terms:** 868

Solución

**1.1 Evaluate the sum** We need to evaluate \[ \sum_{n=1}^{20} 3^{n-2}. \] Notice that when \(n=1\), the term is \(3^{-1}\), and when \(n=20\), the term is \(3^{18}\). This is a geometric series with: - First term: \[ a=3^{-1}=\frac{1}{3}. \] - Common ratio: \[ r=3. \] - Number of terms: \(20\). The sum \(S\) of a geometric series is given by: \[ S=a\frac{r^{N}-1}{r-1}. \] Thus, we have: \[ S=\frac{1}{3}\cdot\frac{3^{20}-1}{3-1}=\frac{1}{3}\cdot\frac{3^{20}-1}{2}=\frac{3^{20}-1}{6}. \] --- **1.2 Geometric Sequence** The given sequence is: \[ 5x;\quad x^{2};\quad \frac{x^{3}}{5};\ldots \] *Step 1. Determine the common ratio.* Calculate the ratio between consecutive terms: \[ r=\frac{x^{2}}{5x}=\frac{x}{5}. \] Verifying with the next term: \[ r=\frac{\frac{x^{3}}{5}}{x^{2}}=\frac{x}{5}. \] Thus, the common ratio is: \[ r=\frac{x}{5}. \] **1.2.1 Determine the possible value of \(x\).** For a geometric sequence to be convergent (i.e. its sum to infinity exists), the absolute value of the common ratio must be less than 1: \[ \left|\frac{x}{5}\right|<1 \quad \Longrightarrow \quad |x|<5. \] Thus, the possible values of \(x\) are all real numbers satisfying: \[ -5

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To evaluate the sum \(\sum_{n=1}^{20} 3^{n-2}\), we can rewrite it as \(\sum_{n=0}^{18} 3^n\) since the starting point is shifted. This creates a geometric series with a first term \(a = 1\) (when \(n = 0\)) and a common ratio \(r = 3\). The sum formula for a geometric series is \(S_n = a \frac{1 - r^n}{1 - r}\). Thus, we find: \[ S_{19} = 1 \cdot \frac{1 - 3^{19}}{1 - 3} = \frac{1 - 3^{19}}{-2} = \frac{3^{19} - 1}{2} \quad \text{(Final Value)} \] For the convergent geometric sequence, which is \(5x; x^2; \frac{x^3}{5}; \ldots\), we need the ratio between its successive terms to be less than 1 for convergence. The ratio \(r = \frac{x^2}{5x} = \frac{x}{5}\) and \(r = \frac{\frac{x^3}{5}}{x^2} = \frac{x}{5}\) gives us \( |r| < 1 \), thus \( |x| < 5 \). So, \( x \) can range anywhere in \((-5, 5)\). If we let \(x = 2\), the sum of the infinite series \(S_{\infty}\) for a geometric series is given by \(S_{\infty} = \frac{a}{1 - r}\). Here \(a = 5(2) = 10\) and \(r = \frac{2}{5}\), so: \[ S_{\infty} = \frac{10}{1 - \frac{2}{5}} = \frac{10}{\frac{3}{5}} = \frac{10 \cdot 5}{3} = \frac{50}{3} \quad \text{(Final Value)} \] Next, for the arithmetic sequence \(20; 23; 26; 29; \ldots; 101\), we find the total number of terms. This sequence's \(n\)-th term can be expressed as \(a_n = 20 + (n-1)3\). Setting \(a_n = 101\): \[ 101 = 20 + (n-1)3 \implies 81 = (n-1)3 \implies n - 1 = 27 \implies n = 28 \quad \text{(Total Terms)} \] Finally, we remove the even numbers from this sequence: \(20, 26, 32, \ldots\) all the way up to \(100\), giving us the odd terms \(23, 29, \ldots, 101\). The remaining sequence is thus an arithmetic sequence starting at \(23\) and ending at \(101\) with a common difference of \(6\) (it skips the evens). The last odd term can be framed similarly to the previous count: - There are \(\{23, 29, \ldots, 101\}\) with: \[ a_n = 23 + (n-1)6 = 101 \implies n = \frac{101 - 23}{6} + 1 = \frac{78}{6} + 1 = 13 + 1 = 14 \quad \text{(Total Odd Terms)} \] The sum of an arithmetic series \(S_n = \frac{n}{2}(first term + last term)\) gives us: \[ S = \frac{14}{2}(23 + 101) = 7 \times 124 = 868 \quad \text{(Final Odd Terms Sum)} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad