et \( \theta \) be an angle in standard position. Name the quadrant in which \( \theta \) lies. \( \sin \theta>0, \tan \theta<0 \) The angle \( \theta \) lies in which quadrant? II III IV
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
When analyzing the signs of sine and tangent, we find that \( \sin \theta > 0 \) indicates that the angle is in a quadrant where sine is positive, which is in Quadrants I and II. However, \( \tan \theta < 0 \) tells us that tangent, which is the ratio of sine to cosine, is negative, implying that sine and cosine have opposite signs; hence we are in a quadrant where sine is positive and cosine is negative. This combination of conditions occurs in Quadrant II, making it the correct quadrant for \( \theta \). So, \( \theta \) lies in Quadrant II!
