Pregunta
Solve the equation using the quadratic formula. \[ x^{2}-12 x+61=0 \] The solution set is \( \} \). (Simplity your answer. Type an exact answer, using radicals and \( i \) as needed. Use integers or fractions for any numbers in the expression. Use a comma to se answers as needed.)
Ask by Mejia Turner. in the United States
Feb 17,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solutions are \( x = 6 - 5i \) and \( x = 6 + 5i \).
Solución
Solve the equation(The complex numbers system) by following steps:
- step0: Solve using the quadratic formula in the complex numbers system:
\(x^{2}-12x+61=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{12\pm \sqrt{\left(-12\right)^{2}-4\times 61}}{2}\)
- step2: Simplify the expression:
\(x=\frac{12\pm \sqrt{-100}}{2}\)
- step3: Simplify the expression:
\(x=\frac{12\pm 10i}{2}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{12+10i}{2}\\&x=\frac{12-10i}{2}\end{align}\)
- step5: Simplify the expression:
\(\begin{align}&x=6+5i\\&x=\frac{12-10i}{2}\end{align}\)
- step6: Simplify the expression:
\(\begin{align}&x=6+5i\\&x=6-5i\end{align}\)
- step7: Rewrite:
\(x_{1}=6-5i,x_{2}=6+5i\)
To solve the equation
\[
x^{2}-12x+61=0
\]
using the quadratic formula, we identify the coefficients:
- \( a = 1 \)
- \( b = -12 \)
- \( c = 61 \)
The quadratic formula is given by:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Now, we calculate the discriminant \( b^2 - 4ac \):
\[
b^2 - 4ac = (-12)^2 - 4 \cdot 1 \cdot 61 = 144 - 244 = -100
\]
Since the discriminant is negative, we will have complex solutions. Now we can substitute the values into the quadratic formula:
\[
x = \frac{-(-12) \pm \sqrt{-100}}{2 \cdot 1} = \frac{12 \pm 10i}{2}
\]
Simplifying this gives:
\[
x = 6 \pm 5i
\]
Thus, the solution set is
\[
\{ 6 - 5i, 6 + 5i \}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To solve the equation \( x^{2}-12x+61=0 \) using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \), we first identify \( a = 1 \), \( b = -12 \), and \( c = 61 \). Calculating the discriminant: \[ b^2 - 4ac = (-12)^2 - 4(1)(61) = 144 - 244 = -100 \] Since the discriminant is negative, we have complex roots. Now substituting into the quadratic formula: \[ x = \frac{-(-12) \pm \sqrt{-100}}{2(1)} = \frac{12 \pm 10i}{2} \] This simplifies to: \[ x = 6 \pm 5i \] Thus, the solution set is \( \{ 6 + 5i, 6 - 5i \} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium