Pregunta
upstudy study bank question image url

A system of three particles with masses \( m_{1}=5 m \) at position \( (0,0,-d), m_{2}=7 m \) at position \( (d, 0, d) \), and \( m_{3}=6 m \) at position \( (0, d, 0) \) has an inertia tensor of \( I=m d^{2}\left[\begin{array}{ccc}18 & 0 & 7 \\ 0 & 19 & 0 \\ 7 & 0 & 13\end{array}\right] \) about the origin. What are the principal moments of inertia of the system? Enter the moments of inertia from smallest to largest. First moment \( = \) Ex: \( 1.23 m d^{2} \) Second moment \( = \) Ex: \( 1.23 m^{2} \) Third moment \( = \) Ex: \( 1.23 m d^{2} \)

Ask by Marshall Ramirez. in the United States
Mar 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The principal moments of inertia from smallest to largest are: - First moment \( = \frac{31-\sqrt{221}}{2}\, m d^2 \) - Second moment \( = 19\, m d^2 \) - Third moment \( = \frac{31+\sqrt{221}}{2}\, m d^2 \)

Solución

We start with the given inertia tensor \[ I = m d^2 \begin{pmatrix} 18 & 0 & 7 \\ 0 & 19 & 0 \\ 7 & 0 & 13 \end{pmatrix}. \] The principal moments of inertia are the eigenvalues of the matrix \[ A = \begin{pmatrix} 18 & 0 & 7 \\ 0 & 19 & 0 \\ 7 & 0 & 13 \end{pmatrix}. \] **Step 1. Write the eigenvalue equation** An eigenvalue \(\lambda\) satisfies \[ \det(A - \lambda I) = 0. \] Thus, \[ \det\begin{pmatrix} 18-\lambda & 0 & 7 \\ 0 & 19-\lambda & 0 \\ 7 & 0 & 13-\lambda \end{pmatrix} = 0. \] **Step 2. Compute the determinant** The determinant is computed by expanding along the second row (or any row/column that simplifies the calculation). Notice that the \( a_{12} \) and \( a_{32} \) elements are already zero, so we can write \[ \det(A-\lambda I) = (19-\lambda)\det\begin{pmatrix} 18-\lambda & 7 \\ 7 & 13-\lambda \end{pmatrix}. \] Now, \[ \det\begin{pmatrix} 18-\lambda & 7 \\ 7 & 13-\lambda \end{pmatrix} = (18-\lambda)(13-\lambda) - 7\cdot7. \] So the characteristic equation becomes \[ (19-\lambda)\Bigl[(18-\lambda)(13-\lambda)-49\Bigr] = 0. \] **Step 3. Solve for the eigenvalues** There are two factors: 1. \(19-\lambda=0\) gives \[ \lambda = 19. \] 2. The quadratic factor: \[ (18-\lambda)(13-\lambda)-49=0. \] First, expand: \[ (18-\lambda)(13-\lambda) = 234 - 18\lambda - 13\lambda + \lambda^2 = \lambda^2 - 31\lambda + 234. \] Thus, the equation becomes \[ \lambda^2 - 31\lambda + 234 - 49 = \lambda^2 - 31\lambda + 185 = 0. \] We solve this quadratic by using the quadratic formula: \[ \lambda = \frac{31 \pm \sqrt{31^2-4\cdot185}}{2}. \] Calculate the discriminant: \[ 31^2 - 4\cdot185 = 961 - 740 = 221. \] Thus, \[ \lambda = \frac{31 \pm \sqrt{221}}{2}. \] **Step 4. List the principal moments in increasing order** The three eigenvalues (and hence the principal moments of inertia) are: \[ \lambda_1 = \frac{31-\sqrt{221}}{2} \, m d^2,\quad \lambda_2 = 19\, m d^2,\quad \lambda_3 = \frac{31+\sqrt{221}}{2}\, m d^2. \] To check the order, we can approximate: \[ \sqrt{221} \approx 14.866. \] Then, \[ \lambda_1 \approx \frac{31-14.866}{2} \approx \frac{16.134}{2} \approx 8.067\, m d^2, \] \[ \lambda_2 = 19\, m d^2, \] \[ \lambda_3 \approx \frac{31+14.866}{2} \approx \frac{45.866}{2} \approx 22.933\, m d^2. \] Thus, from smallest to largest: - First moment \( = \frac{31-\sqrt{221}}{2}\, m d^2 \) - Second moment \( = 19\, m d^2 \) - Third moment \( = \frac{31+\sqrt{221}}{2}\, m d^2 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the principal moments of inertia, we need to calculate the eigenvalues of the inertia tensor \( I \). The given tensor is: \[ I = m d^{2}\left[\begin{array}{ccc}18 & 0 & 7 \\ 0 & 19 & 0 \\ 7 & 0 & 13\end{array}\right] \] We first determine the characteristic polynomial by calculating the determinant of \( I - \lambda I \), where \( \lambda \) represents the eigenvalues: \[ \text{det}(I - \lambda I) = \text{det}\left[\begin{array}{ccc}18 - \lambda & 0 & 7 \\ 0 & 19 - \lambda & 0 \\ 7 & 0 & 13 - \lambda\end{array}\right] \] Setting up the determinant leads us to solve the characteristic equation: \[ (18 - \lambda)(19 - \lambda)(13 - \lambda) - 49(19 - \lambda) = 0 \] After simplifying and solving for the eigenvalues, we find: 1. \( \lambda_1 = 14 m d^2 \) (smallest) 2. \( \lambda_2 = 19 m d^2 \) (middle) 3. \( \lambda_3 = 37 m d^2 \) (largest) Thus, the principal moments of inertia ordered from smallest to largest are: First moment \( = 14 m d^{2} \) Second moment \( = 19 m d^{2} \) Third moment \( = 37 m d^{2} \)

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad