Pregunta

Calculate the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis.

Ask by Vega Rojas. in Nigeria
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{256\pi}{5} \) cubic units.

Solución

We are given the region bounded by y = x² and y = 4. To find the volume of the solid generated when this region is revolved about the x-axis, we follow these steps. Step 1. Find the points of intersection:  Set x² = 4, which gives x = ±2. So, the region in the x‑direction runs from x = –2 to x = 2. Step 2. Set up the washer method:  When revolving about the x-axis, at a typical x between –2 and 2, the vertical slice from y = x² (the lower curve) to y = 4 (the upper line) forms a washer. The outer radius (distance from the x-axis to y = 4) is R = 4, and the inner radius (distance from the x-axis to y = x²) is r = x².  The area of the washer is   A(x) = π(R² – r²) = π(4² – (x²)²) = π(16 – x⁴). Step 3. Write the volume integral:  Integrate A(x) with respect to x over the interval x = –2 to x = 2:   V = ∫ from x = –2 to 2 π(16 – x⁴) dx. Step 4. Simplify the integral:  Notice that (16 – x⁴) is an even function. Therefore, we can integrate from 0 to 2 and multiply by 2:   V = 2π ∫ from x = 0 to 2 (16 – x⁴) dx. Step 5. Evaluate the integral:  Compute ∫ (16 – x⁴) dx from 0 to 2:   ∫ (16 – x⁴) dx = 16x – (x⁵)/5.  Evaluate from 0 to 2:   = [16(2) – (2⁵)/5] – [16(0) – (0⁵)/5]   = 32 – (32/5)   = (160/5 – 32/5)   = 128/5. Thus, the volume is:   V = 2π (128/5) = (256π)/5. Final Answer:  The volume of the solid is (256π)/5 cubic units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the volume of the solid generated by revolving the region bounded by the curve \( y = x^2 \) and the line \( y = 4 \) around the x-axis, we can use the method of disks (or washers). First, we need to determine the points where the curve \( y = x^2 \) intersects the line \( y = 4 \). This can be found by setting \( x^2 = 4 \): \[ x = \pm 2 \] This means our region of interest is between \( x = -2 \) and \( x = 2 \). The volume \( V \) of the solid of revolution is given by the integral: \[ V = \pi \int_{a}^{b} (R(x)^2 - r(x)^2) \, dx \] Here, \( R(x) \) is the outer radius and \( r(x) \) is the inner radius. In this case: - The outer radius \( R(x) = 4 \) (the line) - The inner radius \( r(x) = x^2 \) (the curve) Thus, the volume can be expressed as: \[ V = \pi \int_{-2}^{2} \left( 4^2 - (x^2)^2 \right) dx \] Calculating the integrand: \[ 4^2 = 16, \quad (x^2)^2 = x^4 \] So our integral becomes: \[ V = \pi \int_{-2}^{2} (16 - x^4) \, dx \] Now we can calculate the integral. Since the function \( 16 - x^4 \) is even, we can evaluate from 0 to 2 and double the result: \[ V = 2\pi \int_{0}^{2} (16 - x^4) \, dx \] Evaluating the integral: \[ \int_{0}^{2} (16 - x^4) \, dx = \left[ 16x - \frac{x^5}{5} \right]_{0}^{2} \] Calculating it at the bounds: \[ = \left( 16(2) - \frac{(2)^5}{5} \right) - \left( 16(0) - \frac{(0)^5}{5} \right) \] \[ = 32 - \frac{32}{5} = 32 - 6.4 = 25.6 \] Thus, \[ V = 2 \pi (25.6) = 51.2 \pi \] Therefore, the volume of the solid generated by revolving the region bounded by \( y = x^2 \) and \( y = 4 \) around the x-axis is: \[ \boxed{51.2\pi} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad