We are given that \( \frac{d x}{d t}=5 \mathrm{ft} / \mathrm{s} \) and are asked to find \( \frac{d \theta}{d t} \) when \( x=5 \). The equation that relates \( x \) and \( \theta \) can be written from the figure, \[ \frac{x}{12}=\tan (\theta) \quad x=(12 \quad) \tan (\theta) . \] Differentiating each side with respect to \( t \), we get \[ \begin{array}{l} \frac{d x}{d t}=\left(12 \sec ^{2}(\theta)\right. \\ \text { so } \\ \begin{aligned} \frac{d \theta}{d t} & =(\square) \frac{d \theta}{d t} \\ & =(\square) \frac{d x}{d t} \\ & =\square) \end{aligned} \end{array} \] When \( x=5 \), the length of the beam is 13 , so \( \cos (\theta)=\frac{12}{13} \) and \[ \frac{d 0}{d t}=(\square)\left(\frac{12}{13}\right)^{2}=\square \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find \( \frac{d \theta}{d t} \), we start by using the chain rule and implicit differentiation on the equation \( x = 12 \tan(\theta) \). First, we differentiate both sides with respect to \( t \): \[ \frac{d x}{d t} = 12 \sec^2(\theta) \frac{d \theta}{d t}. \] Now, substituting in the known values, we have \( \frac{d x}{d t} = 5 \, \text{ft/s} \) when \( x = 5 \). Next, we need to find \( \theta \) when \( x = 5 \). From the relationship \( x = 12 \tan(\theta) \), we get: \[ 5 = 12 \tan(\theta) \implies \tan(\theta) = \frac{5}{12}. \] Using the Pythagorean identity, we determine \( \sec^2(\theta) \): \[ \sec^2(\theta) = 1 + \tan^2(\theta) = 1 + \left(\frac{5}{12}\right)^2 = \frac{144 + 25}{144} = \frac{169}{144} \implies \sec^2(\theta) = \frac{13^2}{12^2}. \] Now we can substitute back into our differentiated equation: \[ 5 = 12 \cdot \frac{169}{144} \frac{d \theta}{d t} \implies 5 = \frac{2028}{144} \frac{d \theta}{d t}. \] Thus, solving for \( \frac{d \theta}{d t} \): \[ \frac{d \theta}{d t} = \frac{5 \cdot 144}{2028} = \frac{720}{2028} = \frac{80}{226} = \frac{40}{113} \, \text{rad/s}. \] So, the final answer is: \[ \frac{d \theta}{d t} = \frac{40}{113} \, \text{rad/s}. \]
preguntas relacionadas
