Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To simplify the expression \( \sin^{4} x - \cos^{4} x \), you can use the difference of squares formula. This gives you: \[ \sin^{4} x - \cos^{4} x = (\sin^{2} x + \cos^{2} x)(\sin^{2} x - \cos^{2} x). \] Since \( \sin^{2} x + \cos^{2} x = 1 \), the expression simplifies to: \[ \sin^{4} x - \cos^{4} x = 1 \cdot (\sin^{2} x - \cos^{2} x). \] Thus, the final simplified result is: \[ \sin^{4} x - \cos^{4} x = \sin^{2} x - \cos^{2} x. \] Now you're equipped to tackle any similar trigonometric expressions with confidence! Plus, remember that the identity \( \sin^{2} x - \cos^{2} x \) can further be expressed in terms of tangent for even deeper insights.
