Pregunta
upstudy study bank question image url

Keisha deposited \( \$ 2500 \) into an account with a \( 5.9 \% \) annual interest rate, compounded semiannually. Assuming no other deposits or withdrawals are made, how long will it take for the investment to grow to \( \$ 4000 \) ? Round to the nearest hundredth.

Ask by Hodges Mccarthy. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 8.07 years for the investment to grow to \$4000.

Solución

We start with the formula for compound interest:   A = P(1 + r)ⁿ where   A is the final amount,   P is the principal,   r is the interest rate per compounding period, and   n is the number of compounding periods. Given:   P = 2500,   A = 4000,   annual interest rate = 5.9% compounded semiannually. Since the account is compounded semiannually, the interest rate per period is:   r = 5.9%/2 = 2.95% = 0.0295. Plug in the numbers:   4000 = 2500(1 + 0.0295)ⁿ   Divide both sides by 2500:   4000/2500 = (1.0295)ⁿ  ⟹ 1.6 = (1.0295)ⁿ To solve for n, take the natural logarithm of both sides:   ln(1.6) = n · ln(1.0295) Then   n = ln(1.6) / ln(1.0295) Using a calculator:   ln(1.6) ≈ 0.47000  and  ln(1.0295) ≈ 0.02913 Thus:   n ≈ 0.47000 / 0.02913 ≈ 16.14 Since n represents the number of half-year periods, the time in years (t) is:   t = n/2 ≈ 16.14/2 ≈ 8.07 years So, it will take approximately 8.07 years for the investment to grow to $4000.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit or investment). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. In this case: - \( A = 4000 \) - \( P = 2500 \) - \( r = 0.059 \) - \( n = 2 \) (since it's compounded semiannually) Now plug in the values: \[ 4000 = 2500 \left(1 + \frac{0.059}{2}\right)^{2t} \] This simplifies to: \[ 4000 = 2500 \left(1 + 0.0295\right)^{2t} \] Calculating \(1 + 0.0295 = 1.0295\): \[ 4000 = 2500 (1.0295)^{2t} \] Next, divide both sides by \(2500\): \[ \frac{4000}{2500} = (1.0295)^{2t} \] This simplifies to: \[ 1.6 = (1.0295)^{2t} \] Now we can take the natural logarithm of both sides: \[ \ln(1.6) = 2t \cdot \ln(1.0295) \] Solving for \(t\): \[ t = \frac{\ln(1.6)}{2 \cdot \ln(1.0295)} \] Calculating the natural logs: \[ t \approx \frac{0.4700}{2 \cdot 0.0292} \approx \frac{0.4700}{0.0584} \approx 8.04 \] Rounded to the nearest hundredth, it will take approximately **8.04 years** for Keisha's investment to grow to $4000.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad