Pregunta
upstudy study bank question image url

Sketch the region bounded by the graphs of the equations. Sketch the region bounded by the graphs of the equations. Find the area of the region. \( \left.\qquad \begin{array}{r}f(x)=x^{2}+6 x \\ g(x)\end{array}\right)=x+6 \)

Ask by Stuart Powers. in the United States
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area of the region bounded by the graphs of \( f(x) = x^2 + 6x \) and \( g(x) = x + 6 \) is \( \frac{343}{6} \) square units.

Solución

To find the area of the region bounded by the graphs of the equations \( f(x) = x^2 + 6x \) and \( g(x) = x + 6 \), we need to determine the intersection points of the two graphs and then calculate the area of the region. First, let's find the intersection points by setting the two equations equal to each other: \[ x^2 + 6x = x + 6 \] Simplifying the equation: \[ x^2 + 5x - 6 = 0 \] Now, we can solve this quadratic equation to find the intersection points. Let's solve the quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] In this case, \( a = 1 \), \( b = 5 \), and \( c = -6 \). Substitute these values into the quadratic formula: \[ x = \frac{-5 \pm \sqrt{5^2 - 4(1)(-6)}}{2(1)} \] \[ x = \frac{-5 \pm \sqrt{25 + 24}}{2} \] \[ x = \frac{-5 \pm \sqrt{49}}{2} \] \[ x = \frac{-5 \pm 7}{2} \] Therefore, the intersection points are \( x = 1 \) and \( x = -6 \). Now, we can sketch the region bounded by the graphs of the equations and calculate the area of the region. The area of the region can be calculated by integrating the difference between the two functions over the interval from the smaller intersection point to the larger intersection point. \[ \text{Area} = \int_{-6}^{1} (x + 6) - (x^2 + 6x) \, dx \] Let's calculate the area of the region. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{-6}^{1} \left(\left(x+6\right)-\left(x^{2}+6x\right)\right) dx\) - step1: Remove the parentheses: \(\int_{-6}^{1} \left(x+6-\left(x^{2}+6x\right)\right) dx\) - step2: Subtract the terms: \(\int_{-6}^{1} \left(-5x+6-x^{2}\right) dx\) - step3: Evaluate the integral: \(\int \left(-5x+6-x^{2}\right) dx\) - step4: Use properties of integrals: \(\int -5x dx+\int 6 dx+\int -x^{2} dx\) - step5: Evaluate the integral: \(-\frac{5x^{2}}{2}+\int 6 dx+\int -x^{2} dx\) - step6: Evaluate the integral: \(-\frac{5x^{2}}{2}+6x+\int -x^{2} dx\) - step7: Evaluate the integral: \(-\frac{5x^{2}}{2}+6x-\frac{x^{3}}{3}\) - step8: Return the limits: \(\left(-\frac{5x^{2}}{2}+6x-\frac{x^{3}}{3}\right)\bigg |_{-6}^{1}\) - step9: Calculate the value: \(\frac{343}{6}\) The area of the region bounded by the graphs of the equations \( f(x) = x^2 + 6x \) and \( g(x) = x + 6 \) is \( \frac{343}{6} \) square units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To sketch the region bounded by the curves \( f(x) = x^2 + 6x \) and \( g(x) = x + 6 \), first, we need to find their points of intersection. Setting \( f(x) = g(x) \): \[ x^2 + 6x = x + 6 \implies x^2 + 5x - 6 = 0 \] Factoring yields \((x - 1)(x + 6) = 0\), so the intersection points are \( x = 1 \) and \( x = -6 \). The area between the curves from \( x = -6 \) to \( x = 1 \) can be found by integrating the difference between the two functions: \[ \text{Area} = \int_{-6}^{1} [(x + 6) - (x^2 + 6x)]\,dx = \int_{-6}^{1} (-x^2 - 5x + 6)\,dx \] Calculating the integral: \[ \int (-x^2 - 5x + 6)\,dx = -\frac{x^3}{3} - \frac{5x^2}{2} + 6x \] Evaluating from \(-6\) to \(1\): \[ \left[-\frac{(1)^3}{3} - \frac{5(1)^2}{2} + 6(1)\right] - \left[-\frac{(-6)^3}{3} - \frac{5(-6)^2}{2} + 6(-6)\right] \] This results in: \[ \left[-\frac{1}{3} - \frac{5}{2} + 6\right] - \left[72 - 90 - 36\right] = \left[-\frac{1}{3} - \frac{15}{6} + 36/6\right] - \left[-54\right] \] Calculating yields an area of \( \frac{80}{3} \). Now, the area is approximately 26.67 square units. The sketch of this region will show a parabolic curve opening upward, dipping lower than a linear ascent of \( g(x) = x + 6 \), creating that lovely bounded section. If you want to dive a bit deeper into related functions, trying your hand at polynomial curve analysis is a blast! You can learn how to identify turning points and local maxima/minima, which is key in calculus. Moreover, if you're intrigued by real-world applications, consider how similar equations model projectile motion or trends in economics, illustrating theoretically how functions intersect and evolve over time. Exploring those could unleash your innovative side!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad