Pregunta
upstudy study bank question image url

3.4.2 Hence, or otherwise determine the maximum value of: \( \frac{(1+\tan \beta)^{2}}{1+\tan ^{2} \beta} \)

Ask by Tran Romero. in South Africa
Mar 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The maximum value of \( \frac{(1+\tan \beta)^{2}}{1+\tan ^{2} \beta} \) is 2.

Solución

We begin with the expression \[ \frac{(1+\tan \beta)^2}{1+\tan^2 \beta}. \] Recognize that \[ 1+\tan^2\beta = \sec^2\beta, \] so the expression can be rewritten as \[ (1+\tan\beta)^2 \cos^2\beta. \] Express \(\tan\beta\) in terms of \(\sin\beta\) and \(\cos\beta\): \[ \tan\beta = \frac{\sin\beta}{\cos\beta}. \] Then \[ 1+\tan\beta = 1+\frac{\sin\beta}{\cos\beta} = \frac{\cos\beta+\sin\beta}{\cos\beta}. \] Substitute this back into the expression: \[ (1+\tan\beta)^2 \cos^2\beta = \left(\frac{\cos\beta+\sin\beta}{\cos\beta}\right)^2 \cos^2\beta = (\cos\beta+\sin\beta)^2. \] Now, the problem reduces to finding the maximum value of \[ (\cos\beta+\sin\beta)^2. \] Recall that the maximum value of \(\cos\beta+\sin\beta\) is known to be \(\sqrt{2}\). This maximum occurs when \[ \cos\beta = \sin\beta, \] i.e. when \(\beta = \frac{\pi}{4}\) (or any angle differing by a period that keeps the sum maximized). Since the square of \(\sqrt{2}\) is \[ (\sqrt{2})^2 = 2, \] the maximum value of the original expression is \[ 2. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the maximum value of \( \frac{(1+\tan \beta)^{2}}{1+\tan ^{2} \beta} \), we can start by simplifying the expression. Let \( x = \tan \beta \). Then our expression transforms to: \[ f(x) = \frac{(1+x)^{2}}{1+x^{2}} \] Now we simplify it: \[ f(x) = \frac{1 + 2x + x^{2}}{1 + x^{2}} \] We can split this into parts: \[ f(x) = \frac{1 + x^{2}}{1 + x^{2}} + \frac{2x}{1 + x^{2}} = 1 + \frac{2x}{1 + x^{2}} \] Next, we need to maximize \( \frac{2x}{1 + x^{2}} \). Let: \[ g(x) = \frac{2x}{1 + x^{2}} \] We can differentiate \( g(x) \) to find the critical points: \[ g'(x) = \frac{(1 + x^{2})(2) - 2x(2x)}{(1 + x^{2})^2} = \frac{2(1 + x^{2} - 2x^{2})}{(1 + x^{2})^2} = \frac{2(1 - x^{2})}{(1 + x^{2})^2} \] Setting \( g'(x) = 0 \): \[ 1 - x^{2} = 0 \implies x^{2} = 1 \implies x = 1 \, \text{or} \, x = -1 \] Now, we can evaluate \( g(x) \) at these points: For \( x = 1 \): \[ g(1) = \frac{2(1)}{1 + 1^{2}} = \frac{2}{2} = 1 \] For \( x = -1 \): \[ g(-1) = \frac{2(-1)}{1 + (-1)^{2}} = \frac{-2}{2} = -1 \] Next, let's check the limits as \( x \) approaches \( \pm \infty \): \[ \lim_{x \to +\infty} g(x) = 0 \quad \text{and} \quad \lim_{x \to -\infty} g(x) = 0 \] Thus, the maximum value \( g(x) \) achieves occurs at \( x = 1 \): \[ g(1) = 1 \] Finally, adding this to the constant part of \( f(x) \): \[ f(1) = 1 + 1 = 2 \] Therefore, the maximum value of the original expression \( \frac{(1+\tan \beta)^{2}}{1+\tan ^{2} \beta} \) is: \[ \boxed{2} \]

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad