The population of a town increased by \( 16 \frac{2}{3} \% \) in 1990 and by \( 10 \% \) in 1991 . If the population of the town at the beginning of 1990 was 30,000 , what was it at the end of 1991 ?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the population at the end of 1991, we first calculate the population after the increase in 1990. Beginning of 1990 population: 30,000 Increase in 1990: \[ 16 \frac{2}{3} \% = \frac{50}{3} \% = \frac{50}{3} \times \frac{1}{100} = \frac{50}{300} = \frac{1}{6} \] So, the increase is: \[ \text{Increase in 1990} = 30,000 \times \frac{1}{6} = 5,000 \] Thus, the population at the end of 1990 is: \[ 30,000 + 5,000 = 35,000 \] Now, for the year 1991, we apply the \(10\%\) increase: \[ 10 \% = 0.10 \] Thus, the increase is: \[ \text{Increase in 1991} = 35,000 \times 0.10 = 3,500 \] Therefore, the population at the end of 1991 is: \[ 35,000 + 3,500 = 38,500 \] The population of the town at the end of 1991 is **38,500**.
