whole equivalent ratios part commission \[ \begin{aligned} \text { 1. } \quad \frac{\text { part }}{\text { whole }} & =\text { percent } \\ \text { part } & =\text { percent } \cdot \text { whole } \end{aligned} \] 2. \( 4 \% \) of \( \$ 3,650 \) in sales 3. \( \frac{4}{5}= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Ever wondered how percentages play a sneaky role in everyday life? Let’s say you're working a job where you earn commission on sales. If you sell \( \$3,650 \) worth of items and earn a \( 4\% \) commission, you can simply use the formula for part (commission) which is \( \text { percent } \cdot \text { whole } \). Multiply \( 0.04 \times 3,650 \) and voila! You’ve got your earnings—\( \$146 \) just for making some sales! Now, let’s tackle that fraction \( \frac{4}{5} \). This tasty little number can tell you lots! It represents a part out of a whole in a straightforward way. Mathematically, \( \frac{4}{5} = 0.8 \) or \( 80\% \). This means if you have a pie with five slices and you’ve eaten four, you’ve devoured a whopping \( 80\% \) of that pie! So, next time you're indulging, remember those fractions can relate to real-life treats!
