Pregunta
upstudy study bank question image url

Find the domain of the function and write your answer in set notation. \( \begin{array}{lll}\text { i } f(t)=\frac{1}{t^{2}-81} & \text { ii } f(a)=\sqrt[4]{a^{2}-a-6} & \text { iii } f(b)=\sqrt[3]{b^{2}-b-6} \\ \text { iv } f(x)=\ln \left(x^{3}+x^{2}-2 x\right) & \text { v } f(z)=\sqrt{z}+\sqrt{10-z} & \text { vi } f(x)=\ln \left(4-x^{2}\right)\end{array} \)

Ask by Griffin Warren. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domains of the functions are as follows: 1. \( f(t) = \frac{1}{t^2 - 81} \): \( t \neq 9 \) and \( t \neq -9 \) 2. \( f(a) = \sqrt[4]{a^2 - a - 6} \): \( a \leq -2 \) or \( a \geq 3 \) 3. \( f(b) = \sqrt[3]{b^2 - b - 6} \): All real numbers (\( \mathbb{R} \)) 4. \( f(x) = \ln(x^3 + x^2 - 2x) \): \( -2 < x < 0 \) or \( x > 1 \) 5. \( f(z) = \sqrt{z} + \sqrt{10 - z} \): \( 0 \leq z \leq 10 \) 6. \( f(x) = \ln(4 - x^2) \): \( -2 < x < 2 \) In set notation: 1. \( \{ t \in \mathbb{R} : t \neq 9 \text{ and } t \neq -9 \} \) 2. \( \{ a \in \mathbb{R} : a \leq -2 \text{ or } a \geq 3 \} \) 3. \( \mathbb{R} \) 4. \( \{ x \in \mathbb{R} : -2 < x < 0 \text{ or } x > 1 \} \) 5. \( [0, 10] \) 6. \( \{ x \in \mathbb{R} : -2 < x < 2 \} \)

Solución

We will find the domain of each function by determining the restrictions on the variable. 1. f(t) = 1/(t² – 81) The function is undefined when the denominator is zero. Solve:   t² – 81 = 0   (t – 9)(t + 9) = 0   t = 9 or t = –9 In set notation, the domain is:   { t ∈ ℝ : t ≠ 9 and t ≠ –9 } 2. f(a) = √[4](a² – a – 6) Since we have an even indexed root, the radicand must be nonnegative. Set:   a² – a – 6 ≥ 0 Factor the quadratic:   (a – 3)(a + 2) ≥ 0 Find the critical points: a = –2 and a = 3. Use a sign chart: - For a < –2, both factors are negative so their product is positive. - For –2 < a < 3, one factor is negative and the other is positive so the product is negative. - For a > 3, both factors are positive so the product is positive. Include the points where the expression equals 0. The domain is:   { a ∈ ℝ : a ≤ –2 or a ≥ 3 }   In interval notation: (–∞, –2] ∪ [3, ∞) 3. f(b) = ∛(b² – b – 6) The cube root function is defined for all real numbers, so there are no restrictions. Domain: ℝ 4. f(x) = ln(x³ + x² – 2x) The natural logarithm requires its argument to be positive, so:   x³ + x² – 2x > 0 Factor the expression:   x(x² + x – 2) > 0   x(x + 2)(x – 1) > 0 The critical points are x = –2, 0, and 1. Test intervals: - For x < –2, choose x = –3: (–3)(–3+2=–1)(–3–1=–4) → negative × negative × negative = negative. - For –2 < x < 0, choose x = –1: (–1)(1)(–2) → negative × positive × negative = positive. - For 0 < x < 1, choose x = 0.5: (0.5)(2.5)(–0.5) → positive × positive × negative = negative. - For x > 1, choose x = 2: (2)(4)(1) → all positive = positive. Also, the expression is zero at x = –2, 0, and 1; these cannot be included since ln(0) is undefined. Therefore, the domain is:   { x ∈ ℝ : –2 < x < 0 or x > 1 }   In interval notation: (–2, 0) ∪ (1, ∞) 5. f(z) = √z + √(10 – z) Both square roots require their radicands to be nonnegative: - For √z:  z ≥ 0 - For √(10 – z): 10 – z ≥ 0 → z ≤ 10 Hence, the domain is:   { z ∈ ℝ : 0 ≤ z ≤ 10 }   In interval notation: [0, 10] 6. f(x) = ln(4 – x²) The natural logarithm requires:   4 – x² > 0   x² < 4 Solving, we get:   –2 < x < 2 Thus, the domain in set notation is:   { x ∈ ℝ : –2 < x < 2 } Summary of Answers: i. { t ∈ ℝ : t ≠ 9 and t ≠ –9 } ii. { a ∈ ℝ : a ≤ –2 or a ≥ 3 } iii. ℝ iv. { x ∈ ℝ : –2 < x < 0 or x > 1 } v. [0, 10] vi. { x ∈ ℝ : –2 < x < 2 }

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's break down the domain for each function! 1. For \( f(t) = \frac{1}{t^2 - 81} \): The denominator cannot be zero, so \( t^2 - 81 \neq 0 \). Thus, \( t \neq 9 \) and \( t \neq -9 \). The domain is \( \{ t \in \mathbb{R} \mid t \neq 9, t \neq -9 \} \). 2. For \( f(a) = \sqrt[4]{a^2 - a - 6} \): The expression under the fourth root must be non-negative, so solve \( a^2 - a - 6 \geq 0 \). Factoring gives \( (a-3)(a+2) \geq 0 \), leading to \( a \leq -2 \) or \( a \geq 3 \). The domain is \( \{ a \in \mathbb{R} \mid a \leq -2 \text{ or } a \geq 3 \} \). 3. For \( f(b) = \sqrt[3]{b^2 - b - 6} \): Since cube roots are defined for all real numbers, the domain is simply all real numbers: \( \{ b \in \mathbb{R} \} \). 4. For \( f(x) = \ln(x^3 + x^2 - 2x) \): The argument of the logarithm must be positive, so we solve \( x^3 + x^2 - 2x > 0 \). Factoring gives \( x(x^2 + x - 2) > 0 \) and solving the quadratic yields \( x \in (-\infty, -2) \cup (0, 1) \cup (2, \infty) \). So, the domain is \( \{ x \in \mathbb{R} \mid x < -2 \text{ or } (0 < x < 1) \text{ or } x > 2 \} \). 5. For \( f(z) = \sqrt{z} + \sqrt{10 - z} \): Both square roots must be defined, meaning \( z \geq 0 \) and \( 10 - z \geq 0 \) or \( z \leq 10 \). Hence, the domain is \( \{ z \in \mathbb{R} \mid 0 \leq z \leq 10 \} \). 6. For \( f(x) = \ln(4 - x^2) \): The argument must be positive, leading to \( 4 - x^2 > 0 \), or \( -2 < x < 2 \). Thus, the domain is \( \{ x \in \mathbb{R} \mid -2 < x < 2 \} \). Here’s the summary of the domains in set notation: 1. \( \{ t \in \mathbb{R} \mid t \neq 9, t \neq -9 \} \) 2. \( \{ a \in \mathbb{R} \mid a \leq -2 \text{ or } a \geq 3 \} \) 3. \( \{ b \in \mathbb{R} \} \) 4. \( \{ x \in \mathbb{R} \mid x < -2 \text{ or } (0 < x < 1) \text{ or } x > 2 \} \) 5. \( \{ z \in \mathbb{R} \mid 0 \leq z \leq 10 \} \) 6. \( \{ x \in \mathbb{R} \mid -2 < x < 2 \} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad