Find the domain of the function and write your answer in set notation. \( \begin{array}{lll}\text { i } f(t)=\frac{1}{t^{2}-81} & \text { ii } f(a)=\sqrt[4]{a^{2}-a-6} & \text { iii } f(b)=\sqrt[3]{b^{2}-b-6} \\ \text { iv } f(x)=\ln \left(x^{3}+x^{2}-2 x\right) & \text { v } f(z)=\sqrt{z}+\sqrt{10-z} & \text { vi } f(x)=\ln \left(4-x^{2}\right)\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Let's break down the domain for each function! 1. For \( f(t) = \frac{1}{t^2 - 81} \): The denominator cannot be zero, so \( t^2 - 81 \neq 0 \). Thus, \( t \neq 9 \) and \( t \neq -9 \). The domain is \( \{ t \in \mathbb{R} \mid t \neq 9, t \neq -9 \} \). 2. For \( f(a) = \sqrt[4]{a^2 - a - 6} \): The expression under the fourth root must be non-negative, so solve \( a^2 - a - 6 \geq 0 \). Factoring gives \( (a-3)(a+2) \geq 0 \), leading to \( a \leq -2 \) or \( a \geq 3 \). The domain is \( \{ a \in \mathbb{R} \mid a \leq -2 \text{ or } a \geq 3 \} \). 3. For \( f(b) = \sqrt[3]{b^2 - b - 6} \): Since cube roots are defined for all real numbers, the domain is simply all real numbers: \( \{ b \in \mathbb{R} \} \). 4. For \( f(x) = \ln(x^3 + x^2 - 2x) \): The argument of the logarithm must be positive, so we solve \( x^3 + x^2 - 2x > 0 \). Factoring gives \( x(x^2 + x - 2) > 0 \) and solving the quadratic yields \( x \in (-\infty, -2) \cup (0, 1) \cup (2, \infty) \). So, the domain is \( \{ x \in \mathbb{R} \mid x < -2 \text{ or } (0 < x < 1) \text{ or } x > 2 \} \). 5. For \( f(z) = \sqrt{z} + \sqrt{10 - z} \): Both square roots must be defined, meaning \( z \geq 0 \) and \( 10 - z \geq 0 \) or \( z \leq 10 \). Hence, the domain is \( \{ z \in \mathbb{R} \mid 0 \leq z \leq 10 \} \). 6. For \( f(x) = \ln(4 - x^2) \): The argument must be positive, leading to \( 4 - x^2 > 0 \), or \( -2 < x < 2 \). Thus, the domain is \( \{ x \in \mathbb{R} \mid -2 < x < 2 \} \). Here’s the summary of the domains in set notation: 1. \( \{ t \in \mathbb{R} \mid t \neq 9, t \neq -9 \} \) 2. \( \{ a \in \mathbb{R} \mid a \leq -2 \text{ or } a \geq 3 \} \) 3. \( \{ b \in \mathbb{R} \} \) 4. \( \{ x \in \mathbb{R} \mid x < -2 \text{ or } (0 < x < 1) \text{ or } x > 2 \} \) 5. \( \{ z \in \mathbb{R} \mid 0 \leq z \leq 10 \} \) 6. \( \{ x \in \mathbb{R} \mid -2 < x < 2 \} \)
