DIRECTIONS: READ AND UNDERSTAND TEST QUESTIONS CAREFULLY AND WRITE LETTER OF YOUR ANSWER BEFORE EACH NUMBER. \( \qquad \) 1. What force enables objects to reach the ground? A. Frictional Force B. Magnetic Force \( \qquad \) C. Gravitational Force 2. What is the shape of the trajectory Tension Force A. Circular B. Elliptical \( \qquad \) C. Hyperbolic D. Parabolic 3. Which of the following composed the two linear motions of a projectile? A. Horizontal and Circular Motion B. Vertical and Circular Motion \( \qquad \) C. Horizontal and Vertical Motion D. Vertical and Curvilinear Motion acted solely upon by gravitational force? A. Project B. Projectile \( \qquad \) C. Target 5. What do you call the path followed by an object under projectile motion? A. Project B. Projectile C. Target 6. What D. Trajectory \( \qquad \) 6. What happens to the vertical velocity of an object as it travels through the air? A. Changes continuously C. Gradually increases B. Gradually decreases D. Remains the same \( \qquad \) 7. What happens to the horizontal velocity of an object as it travels through the air? A. Changes continuously C. Gradually increases B. Gradually decreases D. Remains the same \( \qquad \) 8. If you throw a baseball straight up, what is its vertical velocity at the highest point? A. \( 0 \mathrm{~m} / \mathrm{s} \) C. \( 0 \mathrm{~m} / \mathrm{s} 2 \) B. \( 9.8 \mathrm{~m} / \mathrm{s} \) D. \( -9.8 \mathrm{~m} / \mathrm{s} 2 \) 9. If a stone is horizontally launched at a certain height, how do you describe the magnitude of its vertical velocity as it approaches the ground? A. Changes continuously C. Gradually increasing B. Gradually decreasing D. Remains the same
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Did you know that the ancient Greeks were the first to study projectile motion in-depth? They laid the groundwork for physics with thinkers like Aristotle and Archimedes. While Aristotle believed in a different understanding of motion, it was later that Galileo and Newton revolutionized this concept, establishing the principles that govern projectile motion we study today. Muchas gracias, ancient thinkers! Now, let’s talk about how projectile motion applies in real life! Ever wondered why a basketball swooshes through the hoop? That's projectile motion in action! Whether you're shooting hoops, launching a rocket, or tossing a frisbee, understanding how objects move through the air helps improve accuracy and performance. Next time you throw something, think of yourself as a mini physicist in action!
