Explain how the graph of the square root function \( f(x) = \sqrt{x} \) shifts when you change it to \( f(x) = \sqrt{x - 4} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
When you change the function from \( f(x) = \sqrt{x} \) to \( f(x) = \sqrt{x - 4} \), you're moving the graph horizontally. Specifically, the graph shifts to the right by 4 units. This means every point on the original graph will now be found 4 units over to the right. For example, the point (0,0) on the original graph moves to (4,0) in the new graph. It's important to keep in mind that the domain of the function also changes. The original function \( f(x) = \sqrt{x} \) has a domain of \( x \geq 0 \), while the transformed function \( f(x) = \sqrt{x - 4} \) has a domain of \( x \geq 4 \). Thus, you won't see any part of the graph to the left of \( x = 4 \) since those values would lead to taking the square root of a negative number!
