9.2. \( \int \frac{x^{2}-1}{x(x-1)^{2}} d x \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the integral \( \int \frac{x^{2}-1}{x(x-1)^{2}} d x \), we can use the method of partial fractions. We'll first express the integrand in terms of simpler fractions: \[ \frac{x^{2}-1}{x(x-1)^{2}} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^{2}} \] Multiplying both sides by \( x(x-1)^{2} \) gives: \[ x^{2}-1 = A(x-1)^{2} + Bx(x-1) + Cx \] Expanding the right-hand side and collecting like terms helps to find the constants \( A \), \( B \), and \( C \). After determining \( A = 1 \), \( B = -1 \), and \( C = 0 \), we can rewrite the integral as: \[ \int \left( \frac{1}{x} - \frac{1}{x-1} \right) dx \] Now, we integrate term by term: \[ \int \frac{1}{x} dx - \int \frac{1}{x-1} dx = \ln|x| - \ln|x-1| + C \] Combining the logarithmic terms: \[ \ln \left| \frac{x}{x-1} \right| + C \] Thus, the final result is: \[ \int \frac{x^{2}-1}{x(x-1)^{2}} d x = \ln \left| \frac{x}{x-1} \right| + C \]