Find the derivative of the following function. \( y=x^{5}\left(4-\ln x^{5}\right) \) \( \frac{d y}{d x}=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the derivative of the function \( y = x^{5}(4 - \ln x^{5}) \), we will use the product rule and chain rule. First, rewrite the function: \( y = x^{5}(4 - 5 \ln x) \) since \( \ln x^{5} = 5 \ln x \). Now, applying the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}(x^{5}) \cdot (4 - 5 \ln x) + x^{5} \cdot \frac{d}{dx}(4 - 5 \ln x) \] Calculating the derivatives: 1. \( \frac{d}{dx}(x^{5}) = 5x^{4} \) 2. The derivative of \( (4 - 5 \ln x) \) is \( -\frac{5}{x} \). Now substituting back into the product rule formula: \[ \frac{dy}{dx} = 5x^{4}(4 - 5 \ln x) + x^{5} \left(-\frac{5}{x}\right) \] \[ = 5x^{4}(4 - 5 \ln x) - 5x^{4} \] \[ = 5x^{4}(4 - 5 \ln x - 1) = 5x^{4}(3 - 5 \ln x) \] Thus, the derivative is: \[ \frac{dy}{dx} = 5x^{4}(3 - 5 \ln x) \]
