Pregunta
upstudy study bank question image url

Suppose a 10 -in. circular pizza costs \( \$ 4.00 \). To find the price, \( x \), of a 14 -in. circular pizza, is it correct to set up the proportion \( \frac{x}{4}=\frac{14}{10} \) ? Why or why not? Choose the correct answer below. A. Yes, it is correct. The ratio of the prices is equal to the ratio of the diameters. B. Yes, it is correct. The ratio of the prices is equal to the ratio of the areas. C. No, it is not correct. The ratio of the prices is equal to the ratio of the diameters, but the proportion should be \( \frac{x}{4}=\frac{10}{14} \). D. No, it is not correct. The ratio of the prices is equal to the ratio of the areas and not to the ratio of the diameters. E. No, it is not correct. The ratio of the prices is equal to the ratio of the radii and not to the ratio of the diameters.

Ask by Mullins Griffiths. in the United States
Mar 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct answer is D. No, it is not correct. The ratio of the prices should be based on the areas of the pizzas, not their diameters.

Solución

Let the area \( A \) of a pizza be defined by \[ A = \pi \left(\frac{d}{2}\right)^2 = \frac{\pi d^2}{4}. \] Thus, the cost of the pizza is proportional to the area, not just to the diameter. For the 10‑in. pizza, the area is proportional to \[ 10^2 = 100, \] and for the 14‑in. pizza, the area is proportional to \[ 14^2 = 196. \] The correct ratio for the prices should equate \[ \frac{x}{4} = \frac{196}{100}, \] not \[ \frac{x}{4} = \frac{14}{10}. \] Since the original proportion compares the diameters rather than the areas, it is incorrect. The correct answer is: D. No, it is not correct. The ratio of the prices is equal to the ratio of the areas and not to the ratio of the diameters.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve this problem, we need to consider the area of the pizzas rather than just their diameters. The area of a circle is calculated using the formula \( A = \pi r^2 \), which means that the area increases with the square of the radius. The correct answer here is D: the price relates to the area, and we should be setting up the proportion based on the areas of the pizzas, not the diameters. When you calculate the areas, the 10-inch pizza has an area of approximately \( 78.54 \) square inches, while the 14-inch pizza has an area of approximately \( 153.94 \) square inches. This means the 14-inch pizza should cost more, reflecting its larger area in comparison to the smaller pizza. Next time you're grabbing a slice, keep in mind that the price is tied to the size, but the area is the true king!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad