Pregunta
upstudy study bank question image url

6) Find the equation of a tangent line to the curve \( x^{2} y+y^{3}=75 \) at the point \( (4,3) \)

Ask by Bond Frazier. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the tangent line at the point (4, 3) is \( y = -\frac{24}{43}x + \frac{225}{43} \).

Solución

To find the equation of the tangent line to the curve defined by the equation \( x^{2} y + y^{3} = 75 \) at the point \( (4, 3) \), we will follow these steps: 1. **Differentiate the equation implicitly** to find the slope of the tangent line. 2. **Evaluate the derivative at the point** \( (4, 3) \) to find the slope at that point. 3. **Use the point-slope form of the line** to write the equation of the tangent line. ### Step 1: Differentiate the equation implicitly We start with the equation: \[ x^{2} y + y^{3} = 75 \] Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(x^{2} y) + \frac{d}{dx}(y^{3}) = \frac{d}{dx}(75) \] Using the product rule on \( x^{2} y \) and the chain rule on \( y^{3} \): \[ 2xy + x^{2} \frac{dy}{dx} + 3y^{2} \frac{dy}{dx} = 0 \] Now, we can factor out \( \frac{dy}{dx} \): \[ x^{2} \frac{dy}{dx} + 3y^{2} \frac{dy}{dx} = -2xy \] \[ \frac{dy}{dx}(x^{2} + 3y^{2}) = -2xy \] Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{-2xy}{x^{2} + 3y^{2}} \] ### Step 2: Evaluate the derivative at the point \( (4, 3) \) Substituting \( x = 4 \) and \( y = 3 \) into the derivative: \[ \frac{dy}{dx} = \frac{-2(4)(3)}{(4^{2}) + 3(3^{2})} \] Calculating the numerator: \[ -2(4)(3) = -24 \] Calculating the denominator: \[ 4^{2} = 16 \quad \text{and} \quad 3(3^{2}) = 27 \quad \Rightarrow \quad 16 + 27 = 43 \] Thus, we have: \[ \frac{dy}{dx} = \frac{-24}{43} \] ### Step 3: Use the point-slope form of the line The point-slope form of the line is given by: \[ y - y_1 = m(x - x_1) \] where \( m \) is the slope and \( (x_1, y_1) \) is the point of tangency. Substituting \( m = \frac{-24}{43} \), \( x_1 = 4 \), and \( y_1 = 3 \): \[ y - 3 = \frac{-24}{43}(x - 4) \] Now, we can rearrange this to find the equation of the tangent line: \[ y - 3 = \frac{-24}{43}x + \frac{96}{43} \] \[ y = \frac{-24}{43}x + \frac{96}{43} + 3 \] \[ y = \frac{-24}{43}x + \frac{96}{43} + \frac{129}{43} \] \[ y = \frac{-24}{43}x + \frac{225}{43} \] Thus, the equation of the tangent line to the curve at the point \( (4, 3) \) is: \[ y = \frac{-24}{43}x + \frac{225}{43} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation of the tangent line, we first need to determine the slope of the curve at the point \( (4,3) \). This requires implicit differentiation of the equation \( x^{2} y + y^{3} = 75 \). Differentiating both sides with respect to \( x \), we get: \[ 2xy + x^2 \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0. \] Next, we isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx}(x^2 + 3y^2) = -2xy, \] \[ \frac{dy}{dx} = \frac{-2xy}{x^2 + 3y^2}. \] Substituting the point \( (4,3) \): \[ \frac{dy}{dx} = \frac{-2(4)(3)}{(4^2) + 3(3^2)} = \frac{-24}{16 + 27} = \frac{-24}{43}. \] Now we use the point-slope form of a line, given by \( y - y_1 = m(x - x_1) \): \[ y - 3 = \frac{-24}{43}(x - 4). \] Simplifying this, we find the equation of the tangent line is: \[ y = \frac{-24}{43}x + \left(3 + \frac{96}{43}\right) = \frac{-24}{43}x + \frac{225}{43}. \] And there you have the tangent line equation at the point \( (4,3) \)!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad