6) Find the equation of a tangent line to the curve \( x^{2} y+y^{3}=75 \) at the point \( (4,3) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the equation of the tangent line, we first need to determine the slope of the curve at the point \( (4,3) \). This requires implicit differentiation of the equation \( x^{2} y + y^{3} = 75 \). Differentiating both sides with respect to \( x \), we get: \[ 2xy + x^2 \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0. \] Next, we isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx}(x^2 + 3y^2) = -2xy, \] \[ \frac{dy}{dx} = \frac{-2xy}{x^2 + 3y^2}. \] Substituting the point \( (4,3) \): \[ \frac{dy}{dx} = \frac{-2(4)(3)}{(4^2) + 3(3^2)} = \frac{-24}{16 + 27} = \frac{-24}{43}. \] Now we use the point-slope form of a line, given by \( y - y_1 = m(x - x_1) \): \[ y - 3 = \frac{-24}{43}(x - 4). \] Simplifying this, we find the equation of the tangent line is: \[ y = \frac{-24}{43}x + \left(3 + \frac{96}{43}\right) = \frac{-24}{43}x + \frac{225}{43}. \] And there you have the tangent line equation at the point \( (4,3) \)!
