Pregunta
upstudy study bank question image url

A golf ball hits a wall and bounces back at \( 3 / 4 \) the original speed. What part of the original kinetic energy of the ball did it lose in the collision? 1) \( 1 / 4 \) 2) \( 3 / 8 \) 3) \( 7 / 16 \) 4) \( 9 / 16 \) 5) \( 11 / 16 \)

Ask by Wang Chadwick. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The golf ball loses \( \frac{7}{16} \) of its original kinetic energy in the collision.

Solución

Let v be the original speed of the ball. Its initial kinetic energy is (1/2)mv². After the collision, the ball's speed is (3/4)v, so its kinetic energy becomes (1/2)m[(3/4)v]² = (1/2)m(9/16)v² = (9/16)(1/2)mv². The energy lost during the collision is the difference between the initial and final kinetic energies:   Energy lost = (1/2)mv² – (9/16)(1/2)mv². To find the fraction of the original kinetic energy lost, divide the energy loss by the initial kinetic energy:   Fraction lost = [ (1/2)mv² – (9/16)(1/2)mv² ] / (1/2)mv²         = 1 – 9/16         = 7/16. Thus, the ball loses 7/16 of its original kinetic energy in the collision. The correct answer is 3) 7 / 16.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out how much kinetic energy the golf ball loses during the collision, we can use the formula for kinetic energy, which is \( KE = \frac{1}{2} m v^2 \). Let the initial speed of the ball be \( v \). The initial kinetic energy (\( KE_{initial} \)) is: \[ KE_{initial} = \frac{1}{2} m v^2 \] After hitting the wall, the speed of the ball is \( \frac{3}{4}v \). The final kinetic energy (\( KE_{final} \)) is: \[ KE_{final} = \frac{1}{2} m \left( \frac{3}{4}v \right)^2 = \frac{1}{2} m \cdot \frac{9}{16} v^2 = \frac{9}{32} mv^2 \] Now, to find the kinetic energy lost during the collision, we can subtract \( KE_{final} \) from \( KE_{initial} \): \[ \text{Energy Lost} = KE_{initial} - KE_{final} = \frac{1}{2} mv^2 - \frac{9}{32} mv^2 \] Converting \( \frac{1}{2} \) to a fraction with a denominator of 32: \[ \frac{1}{2} = \frac{16}{32} \] Now, we can calculate the energy lost: \[ \text{Energy Lost} = \frac{16}{32} mv^2 - \frac{9}{32} mv^2 = \frac{7}{32} mv^2 \] To find the proportion of kinetic energy lost compared to the initial energy, we divide the energy lost by the initial energy: \[ \text{Proportion Lost} = \frac{\frac{7}{32} mv^2}{\frac{16}{32} mv^2} = \frac{7}{16} \] So the golf ball loses \( \frac{7}{16} \) of its original kinetic energy in the collision. The correct answer is: 3) \( 7 / 16 \)

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad