Pregunta

3.4. Jemifer wishes to buy a new bike on hire purchase. The price of the bike is R15 000. She pays a deposit of \( 10 \% \) of the price. She will pay the rest off at an interest rate of \( 11 \% \) p.a. over four years. What will her monthly payments be?

Ask by Moran Schultz. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Jennifer's monthly payments for the bike will be R405.

Solución

To find Jennifer's monthly payments for the bike on hire purchase, we need to calculate the total amount she will pay over the four years, including the interest. Given: - Price of the bike: R15,000 - Deposit: 10% of the price - Interest rate: 11% p.a. - Time period: 4 years 1. Calculate the deposit amount: \[ \text{Deposit} = 10\% \times \text{Price} = 0.10 \times 15000 = R1500 \] 2. Calculate the remaining amount to be paid: \[ \text{Remaining amount} = \text{Price} - \text{Deposit} = 15000 - 1500 = R13500 \] 3. Calculate the total interest paid over 4 years: \[ \text{Total interest} = \text{Remaining amount} \times \text{Interest rate} \times \text{Time period} \] \[ \text{Total interest} = 13500 \times 0.11 \times 4 = R5940 \] 4. Calculate the total amount to be paid: \[ \text{Total amount} = \text{Remaining amount} + \text{Total interest} = 13500 + 5940 = R19440 \] 5. Calculate the monthly payment: \[ \text{Monthly payment} = \frac{\text{Total amount}}{\text{Time period in months}} \] \[ \text{Monthly payment} = \frac{19440}{4 \times 12} = \frac{19440}{48} = R405 \] Therefore, Jennifer's monthly payments for the bike on hire purchase will be R405.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve for Jemifer's monthly payments, we first determine the deposit amount. The deposit is \( 10\% \) of R15,000, which is R1,500. This means the remaining amount to finance is R15,000 - R1,500 = R13,500. Next, we need to calculate the total amount she will pay over four years. With an interest rate of \( 11\% \) p.a. compounded monthly, the effective monthly interest rate is \( \frac{11\%}{12} = 0.0091667 \). Using the formula for the monthly payment on an installment loan, which is given by: \[ M = P \frac{r(1+r)^n}{(1+r)^n - 1} \] where: - \( M \) is the total monthly payment, - \( P \) is the principal loan amount (R13,500), - \( r \) is the monthly interest rate (0.0091667), - \( n \) is the number of payments (4 years × 12 months = 48). Substituting the values, we get: \[ M = 13500 \frac{0.0091667(1+0.0091667)^{48}}{(1+0.0091667)^{48} - 1} \] Calculating this gives us: \[ M \approx 13500 \frac{0.0091667(1.491825)}{0.491824} \approx 13500 \frac{0.013672}{0.491824} \approx 13500 \times 0.02782 \approx R375.69 \] Therefore, Jemifer's monthly payments would be approximately R375.69.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad