Pregunta
upstudy study bank question image url

8.3 Determine two values of \( p \) for which the equation \( x^{2}+6 x-8 p=0 \) will have rational roots.

Ask by Dunn Rojas. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Two values of \( p \) that make the equation \( x^{2} + 6x - 8p = 0 \) have rational roots are \( p = 0 \) and \( p = 2 \).

Solución

For a quadratic equation ax² + bx + c = 0 to have rational roots, its discriminant must be a perfect square. In our equation   x² + 6x – 8p = 0, the coefficients are a = 1, b = 6, and c = -8p. Its discriminant is   Δ = b² – 4ac = 6² – 4(1)(-8p) = 36 + 32p. For the roots to be rational, we need 36 + 32p to be a perfect square. That is, there must exist an integer k such that   36 + 32p = k². Solving for p gives   p = (k² – 36) / 32. Any integer k that makes p a real number (and often we choose k such that p is also “nice” or an integer) will work. For example, choose k = 6:   p = (6² – 36) / 32 = (36 – 36) / 32 = 0. Then the equation becomes x² + 6x = 0, which factors to x(x + 6) = 0 and clearly has rational roots (x = 0 and x = -6). Now, choose k = 10:   p = (10² – 36) / 32 = (100 – 36) / 32 = 64 / 32 = 2. Then the equation becomes x² + 6x – 16 = 0. The discriminant is 36 + 32·2 = 36 + 64 = 100, and the roots are   x = (–6 ± 10) / 2, which are x = 2 and x = –8, both rational. Thus, two values of p for which x² + 6x – 8p = 0 has rational roots are p = 0 and p = 2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the values of \( p \) for which the quadratic equation \( x^{2}+6x-8p=0 \) has rational roots, we can use the discriminant method. A quadratic equation \( ax^2 + bx + c = 0 \) has rational roots if its discriminant \( D = b^2 - 4ac \) is a perfect square. In our equation, \( a = 1 \), \( b = 6 \), and \( c = -8p \). Thus, the discriminant is: \[ D = 6^2 - 4(1)(-8p) = 36 + 32p = 36 + 32p. \] For the equation to have rational roots, \( D \) should be a perfect square, say \( k^2 \). Therefore, we set up the equation: \[ 36 + 32p = k^2. \] Rearranging the equation gives: \[ 32p = k^2 - 36 \implies p = \frac{k^2 - 36}{32}. \] Now, \( k^2 - 36 \) must be divisible by 32 for \( p \) to be an integer. We can explore various integer values of \( k \) that will make \( k^2 - 36 \) a multiple of 32. Trying \( k = 10 \): \[ k^2 - 36 = 100 - 36 = 64 \implies p = \frac{64}{32} = 2. \] Trying \( k = 2 \): \[ k^2 - 36 = 4 - 36 = -32 \implies p = \frac{-32}{32} = -1. \] Thus, the two values of \( p \) for which the equation \( x^{2}+6x-8p=0 \) will have rational roots are \( p = 2 \) and \( p = -1 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad