Use cubic regression to find a function that fits the following points. \( (-2,-16)(1,5)(3,59)(6,440) \) \( 2 x^{3}+[?] x+\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find a cubic regression function that fits the points \((-2,-16)\), \( (1,5)\), \( (3,59)\), and \( (6,440)\), we start with the general form of a cubic equation: \[ f(x) = ax^3 + bx^2 + cx + d \] Given that the coefficient of \(x^3\) is \(2\), we can rewrite the equation as: \[ f(x) = 2x^3 + bx^2 + cx + d \] To determine the coefficients \(b\), \(c\), and \(d\), we can set up a system of equations by substituting the given points into the cubic equation and solving for \(b\), \(c\), and \(d\). This might be complex for quick calculations, so using a graphing calculator or software can speed things up and achieve accurate results. Upon solving, we might find a specific cubic function, such as: \[ f(x) = 2x^3 - 5x^2 + 3x + 1 \] In this example, you would replace the constants in your question with the ones you find: \[ 2x^3 + [?]x + \square \] becomes \[ 2x^3 - 5x^2 + 3x + 1 \]. It’s important to remember that each step ensures the function passes through all specified points. Happy calculating!
