Pregunta
upstudy study bank question image url

Use technology to determine the absolute minimum of the function. Describe what the \( x \) - and \( y \)-coordinates of this point represent in terms of the problem situation. A skateboard company has to decide how many skateboards to produce each day. The company knows that the costs to produce the skateboards go down the more they make. However, the overall cost to the company increases if they make too many skateboards due to the cost of storing overstock. Let \( s \) be the number of skateboards produced each day. Let \( c \) be the total cost to produce skateboards. The quadratic function \[ c(s)=0.04 s^{2}-16 s+15,000 \] represents the total cost as a function of the number of skateboards produced. What is the absolute minimum of the function? > Enter the answer in each space provided. Use numbers instead of words. \( \square \) , \( \square \) Describe what the \( x \) - and \( y \)-coordinates of this point represent in terms of the problem situation. > Enter the answer in the space provided. \[ \sqrt{x} \]

Ask by Ramirez Dunn. in the United States
Feb 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Enter the answer in each space provided: 200, 13400 Description in terms of the problem: - The x-coordinate (200) represents the optimal number of skateboards produced each day that minimizes the total cost. - The y-coordinate (13400) represents the minimum total cost in dollars associated with producing 200 skateboards per day.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To find the absolute minimum of the function \( c(s) = 0.04s^2 - 16s + 15,000 \), we can use the vertex formula for a quadratic function given by \( s = -\frac{b}{2a} \), where \( a = 0.04 \) and \( b = -16 \). Plugging in these values, we get: \[ s = -\frac{-16}{2 \times 0.04} = \frac{16}{0.08} = 200 \] Next, we substitute \( s = 200 \) back into the cost function to find \( c(200) \): \[ c(200) = 0.04(200)^2 - 16(200) + 15,000 = 0.04(40,000) - 3200 + 15,000 = 1600 - 3200 + 15,000 = 12,400 \] So, the absolute minimum of the function is at \( \square = 200 \), \( \square = 12,400 \). The \( x \)-coordinate (200) represents the optimal number of skateboards that should be produced each day to minimize costs, while the \( y \)-coordinate (12,400) indicates the total minimum cost incurred by the company when producing that optimal number of skateboards.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad