Pregunta
upstudy study bank question image url

Solve \( |x|+7<4 \) \( \{x \mid x<-11 \) or \( x>-3\} \) \( \{x \mid-3
Ask by Rodriguez Olson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are no solutions to the inequality |x| + 7 < 4.

Solución

We're given the inequality |x| + 7 < 4. To solve this, subtract 7 from both sides:   |x| < 4 − 7   |x| < −3 Since the absolute value |x| is always greater than or equal to 0 for any real x, it can never be less than a negative number. Therefore, the inequality has no solutions. The answer is: ∅.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the inequality \( |x| + 7 < 4 \), we first isolate the absolute value: \[ |x| < 4 - 7 \] This simplifies to: \[ |x| < -3 \] Since the absolute value cannot be less than a negative number, there are no values of \( x \) that satisfy this inequality. Thus, the solution set is \( \varnothing \) (the empty set). If you ever find yourself tangled up in inequalities involving absolute values, remember: the absolute value of a number speaks to its distance from zero. When that distance is said to be less than a negative number, you're essentially saying, "I want something to be smaller than nothing," which is a physical impossibility! Additionally, it can be helpful to visualize absolute value inequalities on a number line, separating the positive and negative cases. Here, knowing that the absolute value is intrinsically non-negative leads you to a swift conclusion of an empty solution set—simplicity at its finest!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad