Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To simplify the expression, first, find a common denominator. Here, the common denominator of 2, 10, and 5 is 10. Rewrite each term with the common denominator: - \( \frac{a}{2} = \frac{5a}{10} \) - \( \frac{a+3}{10} = \frac{a+3}{10} \) - \( \frac{a-1}{5} = \frac{2(a-1)}{10} = \frac{2a - 2}{10} \) Now, substituting these back into the expression gives: \[ \frac{5a}{10} - \frac{a + 3}{10} + \frac{2a - 2}{10} \] Combine the fractions: \[ = \frac{5a - (a + 3) + (2a - 2)}{10} \] Now simplify the numerator: \[ 5a - a - 3 + 2a - 2 = (5a - a + 2a) + (-3 - 2) = 6a - 5 \] So, the expression simplifies to: \[ \frac{6a - 5}{10} \] You can further simplify by dividing both terms in the numerator by 1: \[ = \frac{3a - \frac{5}{2}}{5} \] That's your simplified expression!
