Pregunta
\( \int_{1}^{5} \frac{6}{t} d t= \) (Type an exact answer.)
Ask by Weaver Rogers. in the United States
Feb 20,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The integral \( \int_{1}^{5} \frac{6}{t} dt \) equals \( 6\ln{(5)} \).
Solución
Calculate the integral \( \int_{1}^{5} \frac{6}{t} dt \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int_{1}^{5} \frac{6}{t} dt\)
- step1: Evaluate the integral:
\(\int \frac{6}{t} dt\)
- step2: Rewrite the expression:
\(\int 6\times \frac{1}{t} dt\)
- step3: Use properties of integrals:
\(6\times \int \frac{1}{t} dt\)
- step4: Evaluate the integral:
\(6\ln{\left(\left|t\right|\right)}\)
- step5: Return the limits:
\(\left(6\ln{\left(\left|t\right|\right)}\right)\bigg |_{1}^{5}\)
- step6: Calculate the value:
\(6\ln{\left(5\right)}\)
The integral of \( \frac{6}{t} \) from 1 to 5 is \( 6\ln{(5)} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
The integral \( \int \frac{6}{t} dt \) evaluates to \( 6 \ln |t| + C \), where \( C \) is the constant of integration. Now applying the limits from 1 to 5, we compute: \[ \int_{1}^{5} \frac{6}{t} dt = \left[ 6 \ln |t| \right]_{1}^{5} = 6 \ln |5| - 6 \ln |1| \] Since \( \ln(1) = 0 \), we have: \[ 6 \ln 5 - 0 = 6 \ln 5 \] Thus, the exact answer is: \[ 6 \ln 5 \]
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium