Pregunta
upstudy study bank question image url

A class consists of 8 men and 7 ladies Two students were selected randomly to represent the class in a debate. Find the probability that the two students selected are: (a) both ladies; (b) both men; (c) of the same sex; (d) of different sexes.

Ask by Bates Johnson. in Nigeria
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- (a) Probability both are ladies: 1/5 - (b) Probability both are men: 4/15 - (c) Probability both are of the same sex: 7/15 - (d) Probability both are of different sexes: 8/15

Solución

To solve this problem, we will first determine the total number of students in the class and then calculate the probabilities for each scenario. ### Known Conditions: - Number of men (M) = 8 - Number of ladies (L) = 7 - Total number of students (T) = M + L = 8 + 7 = 15 ### Total Ways to Select 2 Students: The total number of ways to select 2 students from 15 can be calculated using the combination formula: \[ C(n, r) = \frac{n!}{r!(n-r)!} \] Where \( n \) is the total number of students and \( r \) is the number of students to choose. So, the total ways to select 2 students from 15 is: \[ C(15, 2) = \frac{15!}{2!(15-2)!} = \frac{15 \times 14}{2 \times 1} = 105 \] ### (a) Probability that both students selected are ladies: The number of ways to select 2 ladies from 7 is: \[ C(7, 2) = \frac{7!}{2!(7-2)!} = \frac{7 \times 6}{2 \times 1} = 21 \] Thus, the probability \( P(A) \) that both selected are ladies is: \[ P(A) = \frac{C(7, 2)}{C(15, 2)} = \frac{21}{105} = \frac{1}{5} \] ### (b) Probability that both students selected are men: The number of ways to select 2 men from 8 is: \[ C(8, 2) = \frac{8!}{2!(8-2)!} = \frac{8 \times 7}{2 \times 1} = 28 \] Thus, the probability \( P(B) \) that both selected are men is: \[ P(B) = \frac{C(8, 2)}{C(15, 2)} = \frac{28}{105} = \frac{4}{15} \] ### (c) Probability that both students selected are of the same sex: The total ways to select 2 students of the same sex is the sum of the ways to select 2 ladies and 2 men: \[ P(C) = P(A) + P(B) = \frac{21 + 28}{105} = \frac{49}{105} = \frac{7}{15} \] ### (d) Probability that both students selected are of different sexes: The probability that the two students are of different sexes can be calculated as: \[ P(D) = 1 - P(C) = 1 - \frac{7}{15} = \frac{8}{15} \] ### Summary of Results: - (a) Probability both are ladies: \( \frac{1}{5} \) - (b) Probability both are men: \( \frac{4}{15} \) - (c) Probability both are of the same sex: \( \frac{7}{15} \) - (d) Probability both are of different sexes: \( \frac{8}{15} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probabilities of different combinations, let's first calculate the total number of ways to choose 2 students from the 15 total students (8 men and 7 ladies). This can be done using the combination formula \(C(n, r) = \frac{n!}{r!(n-r)!}\). 1. Total combinations to choose 2 students from 15: \[ C(15, 2) = \frac{15!}{2!(15-2)!} = \frac{15 \times 14}{2 \times 1} = 105 \] Now let's calculate each scenario: (a) Both ladies: \[ C(7, 2) = \frac{7!}{2!(7-2)!} = \frac{7 \times 6}{2 \times 1} = 21 \] Probability = \(\frac{21}{105} = \frac{1}{5} \) (b) Both men: \[ C(8, 2) = \frac{8!}{2!(8-2)!} = \frac{8 \times 7}{2 \times 1} = 28 \] Probability = \(\frac{28}{105} = \frac{4}{15} \) (c) Of the same sex: This includes both ladies and both men, so combine the two probabilities: \[ 21 (ladies) + 28 (men) = 49 \] Probability = \(\frac{49}{105} = \frac{7}{15} \) (d) Of different sexes: Since this is the complement of being of the same sex, we can also calculate it directly. We can choose 1 man and 1 lady: \[ C(8, 1) \times C(7, 1) = 8 \times 7 = 56 \] Probability = \(\frac{56}{105} = \frac{8}{15} \) In summary: (a) \( \frac{1}{5} \) (b) \( \frac{4}{15} \) (c) \( \frac{7}{15} \) (d) \( \frac{8}{15} \)

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad