Responder
**Problem 2: Infinite Geometric Sequence**
- **Part a:** The \( n^{\text{th}} \) term is \( a_n = 16 \times \left(\frac{1}{2}\right)^{n-1} \).
- **Part b:** The sum of the first \( n \) terms is greater than 31 when \( n \) is 6 or more.
- **Part c:** The sum to infinity of the sequence is 32.
**Problem 3: Athlete's Running Distance**
The total distance run after \( n \) days is \( D_n = 200 \times (1.1)^n - 200 \) kilometers.
Solución
Let's solve the problems step by step.
### Problem 2: Infinite Geometric Sequence
**Given:**
The first three terms of the geometric sequence are \( a_1 = 16 \), \( a_2 = 8 \), and \( a_3 = 4 \).
#### Part a: Determine the \( n^{\text{th}} \) term of the sequence.
1. **Identify the common ratio \( r \)**:
\[
r = \frac{a_2}{a_1} = \frac{8}{16} = \frac{1}{2}
\]
2. **General formula for the \( n^{\text{th}} \) term**:
The \( n^{\text{th}} \) term of a geometric sequence can be expressed as:
\[
a_n = a_1 \cdot r^{n-1}
\]
3. **Substituting the values**:
\[
a_n = 16 \cdot \left(\frac{1}{2}\right)^{n-1}
\]
Thus, the \( n^{\text{th}} \) term of the sequence is:
\[
a_n = 16 \cdot \left(\frac{1}{2}\right)^{n-1}
\]
#### Part b: Determine all possible values of \( n \) for which the sum of the first \( n \) terms is greater than 31.
1. **Sum of the first \( n \) terms \( S_n \)**:
The formula for the sum of the first \( n \) terms of a geometric sequence is:
\[
S_n = a_1 \cdot \frac{1 - r^n}{1 - r}
\]
2. **Substituting the values**:
\[
S_n = 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}} = 32 \cdot \left(1 - \left(\frac{1}{2}\right)^n\right)
\]
3. **Setting up the inequality**:
\[
32 \cdot \left(1 - \left(\frac{1}{2}\right)^n\right) > 31
\]
4. **Solving the inequality**:
\[
1 - \left(\frac{1}{2}\right)^n > \frac{31}{32}
\]
\[
-\left(\frac{1}{2}\right)^n > -\frac{1}{32}
\]
\[
\left(\frac{1}{2}\right)^n < \frac{1}{32}
\]
5. **Taking logarithm**:
\[
n > 5
\]
Thus, the possible values of \( n \) are \( n = 6, 7, 8, \ldots \)
#### Part c: Calculate the sum to infinity of this sequence.
1. **Sum to infinity \( S_{\infty} \)**:
The formula for the sum to infinity of a geometric sequence is:
\[
S_{\infty} = \frac{a_1}{1 - r}
\]
2. **Substituting the values**:
\[
S_{\infty} = \frac{16}{1 - \frac{1}{2}} = \frac{16}{\frac{1}{2}} = 32
\]
Thus, the sum to infinity of this sequence is:
\[
S_{\infty} = 32
\]
---
### Problem 3: Athlete's Running Distance
**Given:**
The athlete runs 20 km on a certain Monday and increases the distance by \( 10\% \) every day.
1. **Initial distance**:
\[
d_1 = 20 \text{ km}
\]
2. **Distance on the \( n^{\text{th}} \) day**:
The distance run on the \( n^{\text{th}} \) day can be expressed as:
\[
d_n = d_1 \cdot (1 + 0.1)^{n-1} = 20 \cdot (1.1)^{n-1}
\]
3. **Total distance run after \( n \) days**:
The total distance run after \( n \) days is the sum of a geometric series:
\[
D_n = d_1 \cdot \frac{(1 + r)^n - 1}{r} = 20 \cdot \frac{(1.1)^n - 1}{0.1}
\]
Thus, the total distance run after \( n \) days is:
\[
D_n = 200 \cdot ((1.1)^n - 1)
\]
If you need a specific number of days or total distance, please provide that information!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución