Responder
The solutions to the pairs of simultaneous equations are:
a) \( x = 4, y = 1 \)
b) \( x = -2, y = 1 \)
c) \( x = -5, y = \frac{11}{3} \)
Solución
Solve the equation \( x+y=5;x-y=3 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+y=5\\x-y=3\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=5-y\\x-y=3\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(5-y-y=3\)
- step3: Subtract the terms:
\(5-2y=3\)
- step4: Move the constant to the right side:
\(-2y=3-5\)
- step5: Subtract the numbers:
\(-2y=-2\)
- step6: Change the signs:
\(2y=2\)
- step7: Divide both sides:
\(\frac{2y}{2}=\frac{2}{2}\)
- step8: Divide the numbers:
\(y=1\)
- step9: Substitute the value of \(y:\)
\(x=5-1\)
- step10: Calculate:
\(x=4\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=1\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=4\\y=1\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(4,1\right)\)
Solve the equation \( x-3y=-5;2x+3y=-1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x-3y=-5\\2x+3y=-1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-5+3y\\2x+3y=-1\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(2\left(-5+3y\right)+3y=-1\)
- step3: Simplify:
\(-10+9y=-1\)
- step4: Move the constant to the right side:
\(9y=-1+10\)
- step5: Add the numbers:
\(9y=9\)
- step6: Divide both sides:
\(\frac{9y}{9}=\frac{9}{9}\)
- step7: Divide the numbers:
\(y=1\)
- step8: Substitute the value of \(y:\)
\(x=-5+3\times 1\)
- step9: Substitute back:
\(x=-5+3\)
- step10: Calculate:
\(x=-2\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=-2\\y=1\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=-2\\y=1\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(-2,1\right)\)
Solve the equation \( 2x-3y=-21;2x+3y=1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x-3y=-21\\2x+3y=1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{-21+3y}{2}\\2x+3y=1\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(2\times \frac{-21+3y}{2}+3y=1\)
- step3: Simplify:
\(-21+6y=1\)
- step4: Move the constant to the right side:
\(6y=1+21\)
- step5: Add the numbers:
\(6y=22\)
- step6: Divide both sides:
\(\frac{6y}{6}=\frac{22}{6}\)
- step7: Divide the numbers:
\(y=\frac{11}{3}\)
- step8: Substitute the value of \(y:\)
\(x=\frac{-21+3\times \frac{11}{3}}{2}\)
- step9: Calculate:
\(x=-5\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=-5\\y=\frac{11}{3}\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=-5\\y=\frac{11}{3}\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(-5,\frac{11}{3}\right)\)
The solutions to the pairs of simultaneous equations are:
a) \( x = 4, y = 1 \)
b) \( x = -2, y = 1 \)
c) \( x = -5, y = \frac{11}{3} \) or \( x = -5, y = 3.6 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución