Pregunta
upstudy study bank question image url

(d) \( |x|<4 \)

Ask by Bernard Estrada. in Australia
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to \( |x| < 4 \) is \( -4 < x < 4 \).

Solución

To solve the inequality \( |x| < 4 \), we need to understand what the absolute value means. The expression \( |x| < 4 \) indicates that the distance of \( x \) from 0 is less than 4. This can be expressed as a compound inequality: \[ -4 < x < 4 \] ### Step-by-step explanation: 1. **Understanding Absolute Value**: The absolute value \( |x| \) represents the distance of \( x \) from 0 on the number line. Therefore, \( |x| < 4 \) means that \( x \) is within 4 units of 0. 2. **Breaking Down the Inequality**: The inequality \( |x| < 4 \) can be rewritten as two separate inequalities: - \( x < 4 \) - \( x > -4 \) 3. **Combining the Inequalities**: We can combine these two inequalities into one compound inequality: \[ -4 < x < 4 \] ### Conclusion: The solution to the inequality \( |x| < 4 \) is the interval: \[ (-4, 4) \] This means that \( x \) can take any value between -4 and 4, not including -4 and 4 themselves.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the inequality \( |x| < 4 \) translates to saying that \( x \) is confined to a very cozy "house" on the number line? Specifically, it means \( x \) can only take on values between -4 and 4 (exclusive). So, you can think of it as saying, "Stay within the bounds, but not touching the walls!" When solving this inequality, a common mistake is treating the absolute value as a simple number. Remember to split it into two inequalities: \( -4 < x < 4 \). Always double-check your range! If you cross the walls of the absolute value, you’ll find you’ve strayed out of bounds!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad