Pregunta
upstudy study bank question image url

Given \( h(x)=f^{\prime}(x) \) where \( f \) is a function defined for \( -2 \leq x \leq 4 \) 1561 1562 Explain why \( f \) has a local mimmum to the graph of \( f \)

Ask by Clarke Collins. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( f \) has a local minimum at a point where its derivative \( f'(x) \) is zero and changes from negative to positive.

Solución

To determine why the function \( f \) has a local minimum based on the information given, we can analyze the relationship between the function \( f \) and its derivative \( h(x) = f'(x) \). ### Step 1: Understanding the Derivative The derivative \( f'(x) \) provides information about the slope of the function \( f(x) \): - If \( f'(x) > 0 \), the function \( f(x) \) is increasing at that point. - If \( f'(x) < 0 \), the function \( f(x) \) is decreasing at that point. - If \( f'(x) = 0 \), the function \( f(x) \) may have a local maximum, local minimum, or a saddle point. ### Step 2: Conditions for a Local Minimum A function \( f \) has a local minimum at a point \( c \) if: 1. \( f'(c) = 0 \) (the derivative is zero at that point). 2. \( f'(x) \) changes from negative to positive as \( x \) passes through \( c \) (the slope changes from decreasing to increasing). ### Step 3: Analyzing the Given Information Since we know that \( h(x) = f'(x) \), we need to find a point \( c \) in the interval \( -2 \leq x \leq 4 \) where: - \( h(c) = 0 \) - \( h(x) < 0 \) for \( x < c \) (indicating that \( f \) is decreasing before \( c \)) - \( h(x) > 0 \) for \( x > c \) (indicating that \( f \) is increasing after \( c \)) ### Conclusion If such a point \( c \) exists within the interval \( -2 \leq x \leq 4 \), then \( f \) has a local minimum at \( c \). To summarize, \( f \) has a local minimum if: - There is a point \( c \) where \( f'(c) = 0 \). - The derivative changes from negative to positive at that point. If you have specific values or conditions for \( f'(x) \) in the interval, we can analyze those to confirm the existence of a local minimum.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find a local minimum of the function \( f \), we look at its derivative \( h(x) = f'(x) \). A local minimum occurs where the derivative changes from negative to positive. If, at a certain point \( c \) within the interval \([-2, 4]\), we find \( f'(c) = 0 \) and \( f'(x) \) is negative for \( x < c \) and positive for \( x > c \), then \( f \) has a local minimum at \( x = c \). This means that just before \( c \), the function is decreasing, and just after \( c \), it starts increasing, forming a "valley" in the graph. In addition, if \( h(x) \) has points of inflection or if there are values where \( h(x) \) becomes zero, it gives us a clue about the sharp turns in the function \( f \). If \( f'(x) \) has those zeroes in our interval, they will indicate potential local extrema (minimums or maximums) in conjunction with the first derivative test. Checking the endpoints is also crucial to verify if they yield lower values than the points found inside the interval.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad