Pregunta
upstudy study bank question image url

Write the standard form of the equation and the general form of the equation of the circle with radius \( r \) and center \( (h, k) \). Then graph the circle. \( r=5 ; \quad(h, k)=(-4,-3) \) The standard form of the equation of this circle is

Ask by John Guzman. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The standard form of the equation of the circle is \((x + 4)^2 + (y + 3)^2 = 25\).

Solución

It seems that I am unable to generate a graph at the moment. However, I can guide you on how to graph the circle manually. ### Steps to Graph the Circle 1. **Draw the Coordinate Axes:** - Draw a horizontal line for the x-axis and a vertical line for the y-axis. 2. **Plot the Center:** - Mark the center of the circle at the point \((-4, -3)\). 3. **Mark the Radius:** - From the center, measure \(5\) units in all four cardinal directions: - Right to \((1, -3)\) - Left to \((-9, -3)\) - Up to \((-4, 2)\) - Down to \((-4, -8)\) 4. **Draw the Circle:** - Using a compass or freehand, draw a smooth curve connecting these points to form the circle. ### Final Note You now have both the standard and general forms of the equation of the circle, and you can graph it using the steps provided. If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The standard form of the equation of a circle with radius \( r \) and center \( (h, k) \) is given by the formula: \[ (x - h)^2 + (y - k)^2 = r^2 \] For your circle, substituting \( r = 5 \) and \( (h, k) = (-4, -3) \) gives: \[ (x + 4)^2 + (y + 3)^2 = 25 \] The general form of the equation can be obtained by expanding the standard form. Expanding \( (x + 4)^2 + (y + 3)^2 = 25 \) results in: \[ x^2 + 8x + 16 + y^2 + 6y + 9 = 25 \] Simplifying this gives: \[ x^2 + y^2 + 8x + 6y = 0 \] Now, when you graph this circle, you'll place the center at the point (-4, -3) and draw a circle that extends 5 units in all directions from that center, creating a lovely round shape on the coordinate plane!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad