Pregunta
upstudy study bank question image url

QUESTION 3 Applications 3.1 Express the following as single trigonometry ratio: 3.1.1 \( \cos 2 x \cdot \cos 3 x-\sin 2 x \cdot \sin 3 x \) \[ \cos (2 x+3 x)=\cos (5 x) \] 3.1 .2 \[ \begin{array}{l} \sin 2 x \cdot \cos x+\cos 2 x \cdot \sin x \\ \sin (2 x+x)=\sin 3 x \end{array} \] 3.2 Determine the values of the following without using a calculator. 3.2.1 \( \sin 85^{\circ} \cdot \cos 25^{\circ}-\cos 85^{\circ} \cdot \sin 25^{\circ} \) \[ \begin{array}{l} \sin 85^{\circ} \cdot \cos 25^{\circ}-\cos 85^{\circ} \cdot \sin 25^{\circ} \\ \sin A \cdot \cos B-\cos A \sin B=\sin (A-B) \\ \sin 85^{\circ} \cdot \cos 25-\cos 85^{\circ} \sin 25=\sin \left(85^{\circ}-25^{\circ}\right)=\sin \\ \therefore \sin 60=\frac{\frac{\pi}{3}}{2} \end{array} \] 3.2.2 \( \cos 160^{\circ} \cdot \cos 10^{\circ}+\sin 160^{\circ} \cdot \sin 10^{\circ} \) (4) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \)

Ask by Turner Erickson. in South Africa
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

3.1.1 \( \cos 5x \) 3.1.2 \( \sin 3x \) 3.2.1 \( \frac{\sqrt{3}}{2} \) 3.2.2 \( -\frac{\sqrt{3}}{2} \)

Solución

Below are the step‐by‐step solutions: 3.1 Express each expression as a single trigonometric function. 3.1.1  We use the cosine addition formula:   cos A cos B – sin A sin B = cos (A + B)  Let A = 2x and B = 3x. Then,   cos 2x · cos 3x – sin 2x · sin 3x = cos (2x + 3x) = cos 5x. 3.1.2  We use the sine addition formula:   sin A cos B + cos A sin B = sin (A + B)  Let A = 2x and B = x. Then,   sin 2x · cos x + cos 2x · sin x = sin (2x + x) = sin 3x. 3.2 Compute each value without using a calculator. 3.2.1  We recognize the formula:   sin A cos B – cos A sin B = sin (A – B)  Let A = 85° and B = 25°. Then,   sin 85° · cos 25° – cos 85° · sin 25° = sin (85° – 25°) = sin 60°.  Recall that sin 60° = (√3)/2. 3.2.2  We use the cosine identity:   cos A cos B + sin A sin B = cos (A – B)  Let A = 160° and B = 10°. Then,   cos 160° · cos 10° + sin 160° · sin 10° = cos (160° – 10°) = cos 150°.  Using the identity cos (180° – θ) = –cos θ, with θ = 30°,   cos 150° = –cos 30° = –(√3)/2. Summary of answers:  3.1.1 cos 5x  3.1.2 sin 3x  3.2.1 (√3)/2  3.2.2 –(√3)/2

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the formulas you're using, known as angle addition and subtraction identities, have roots in ancient Greek mathematics? Mathematicians like Hipparchus and Ptolemy explored these relationships long before calculators made life easier! Their discoveries were crucial for astronomy and navigation, showcasing the power of trigonometry in understanding the cosmos. When tackling trigonometric expressions, a common pitfall is misapplying the identities. Always be cautious to ensure that you're using the correct sign for addition and subtraction! A tip to avoid errors is to draw a quick sketch of the angles involved; visualizing helps in catching any potential mistakes before they trip you up on paper. Keep your angle relationships clear, and you'll breeze through those formulas!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad