Pregunta
upstudy study bank question image url

1. \( g(x)=-x^{3}+21 \)

Ask by Matthews Campbell. in the United States
Feb 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( g(x) = -x^3 + 21 \) has a domain of all real numbers, a range of \( (-\infty, 21] \), a y-intercept at (0, 21), and an x-intercept at \( \left(\sqrt[3]{21}, 0\right) \). It has a maximum point at (0, 21).

Solución

To analyze the function \( g(x) = -x^3 + 21 \), we can explore various features such as its domain, range, intercepts, and critical points. Let's go through these step by step. ### Step 1: Domain The domain of a polynomial function is all real numbers. Therefore, the domain of \( g(x) \) is: \[ \text{Domain: } (-\infty, \infty) \] ### Step 2: Range Since \( g(x) \) is a cubic function with a negative leading coefficient, it will decrease without bound as \( x \) approaches positive infinity and increase without bound as \( x \) approaches negative infinity. The maximum value occurs at the vertex. To find the maximum value, we can find the critical points by taking the derivative and setting it to zero. ### Step 3: Finding Critical Points Let's calculate the derivative \( g'(x) \): \[ g'(x) = -3x^2 \] Setting the derivative equal to zero to find critical points: \[ -3x^2 = 0 \] This gives: \[ x = 0 \] ### Step 4: Evaluating \( g(x) \) at Critical Points Now, we evaluate \( g(x) \) at \( x = 0 \): \[ g(0) = -0^3 + 21 = 21 \] ### Step 5: Range Conclusion Since the function decreases to negative infinity as \( x \) moves away from 0 in both directions, the range of \( g(x) \) is: \[ \text{Range: } (-\infty, 21] \] ### Step 6: Intercepts - **Y-intercept**: This occurs when \( x = 0 \): \[ g(0) = 21 \quad \text{(Y-intercept: (0, 21))} \] - **X-intercepts**: Set \( g(x) = 0 \): \[ -x^3 + 21 = 0 \implies x^3 = 21 \implies x = \sqrt[3]{21} \] Thus, the x-intercept is: \[ \text{X-intercept: } \left(\sqrt[3]{21}, 0\right) \] ### Summary of Features - **Domain**: \( (-\infty, \infty) \) - **Range**: \( (-\infty, 21] \) - **Y-intercept**: \( (0, 21) \) - **X-intercept**: \( \left(\sqrt[3]{21}, 0\right) \) - **Critical Point**: Maximum at \( (0, 21) \) If you need further analysis or specific calculations, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

This function, \( g(x) = -x^{3} + 21 \), models a cubic equation that has a maximum point at \( x = 0 \). At this point, \( g(0) = 21 \), meaning it's the highest point on the graph. Since it's a cubic function with a negative leading coefficient, the graph will extend to negative infinity as \( x \) moves away from zero in either direction, creating a dramatic "downhill" effect! To fully visualize \( g(x) \), consider plotting some key values. When \( x = 3 \), \( g(3) = -27 + 21 = -6 \), indicating the function crosses below the x-axis. This means you have a changing pattern in the output, oscillating between highs and lows, which can be quite fascinating to analyze! Analyzing points where \( g(x) = 0 \) would help in understanding its roots and real-world applications, such as modeling the decline of a business or product's popularity over time.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad