Pregunta
upstudy study bank question image url

Answers to 2 decimal places where necessary. Proof, by solving for \( x \) that the roots of \( x^{2}-2 x=7 \) are irrational.

Ask by Garza Macdonald. in South Africa
Jan 29,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The roots of the equation \( x^{2} - 2x = 7 \) are irrational and approximately \( x \approx 3.83 \) and \( x \approx -1.83 \).

Solución

To prove that the roots of the quadratic equation \( x^{2} - 2x = 7 \) are irrational, we'll solve for \( x \) and analyze the nature of the solutions. ### Step 1: Rewrite the Equation First, rearrange the equation to standard quadratic form: \[ x^{2} - 2x - 7 = 0 \] ### Step 2: Apply the Quadratic Formula The quadratic formula to find the roots of \( ax^{2} + bx + c = 0 \) is: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] For our equation, \( a = 1 \), \( b = -2 \), and \( c = -7 \). Plugging these values into the formula gives: \[ x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(1)(-7)}}{2(1)} = \frac{2 \pm \sqrt{4 + 28}}{2} = \frac{2 \pm \sqrt{32}}{2} \] ### Step 3: Simplify the Square Root Simplify \( \sqrt{32} \): \[ \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2} \] So, the solutions become: \[ x = \frac{2 \pm 4\sqrt{2}}{2} = 1 \pm 2\sqrt{2} \] ### Step 4: Analyze the Solutions The solutions are: \[ x = 1 + 2\sqrt{2} \quad \text{and} \quad x = 1 - 2\sqrt{2} \] Since \( \sqrt{2} \) is an irrational number, multiplying it by 2 and adding or subtracting 1 will still result in an irrational number. Therefore, both roots \( 1 + 2\sqrt{2} \) and \( 1 - 2\sqrt{2} \) are irrational. ### Step 5: Decimal Approximations (to Two Decimal Places) For practical purposes, we can approximate the roots as follows: \[ \sqrt{2} \approx 1.4142 \] \[ 2\sqrt{2} \approx 2 \times 1.4142 = 2.8284 \] Thus, \[ x \approx 1 + 2.8284 = 3.8284 \approx 3.83 \] \[ x \approx 1 - 2.8284 = -1.8284 \approx -1.83 \] ### Conclusion The roots of the equation \( x^{2} - 2x = 7 \) are: \[ x = 1 + 2\sqrt{2} \approx 3.83 \quad \text{and} \quad x = 1 - 2\sqrt{2} \approx -1.83 \] Both roots are **irrational**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the roots of the equation \( x^{2} - 2x = 7 \), we can rewrite it in standard form as \( x^{2} - 2x - 7 = 0 \). Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \), where \( a = 1 \), \( b = -2 \), and \( c = -7 \), we first calculate the discriminant: \[ b^{2} - 4ac = (-2)^{2} - 4(1)(-7) = 4 + 28 = 32. \] Since the discriminant is positive, we have real roots. However, we need to check if they are rational or irrational. The square root of 32 can be simplified to \( 4\sqrt{2} \), which is not a perfect square. Therefore, the roots are: \[ x = \frac{2 \pm 4\sqrt{2}}{2} = 1 \pm 2\sqrt{2}. \] Since \( 2\sqrt{2} \) is irrational, the roots \( 1 + 2\sqrt{2} \) and \( 1 - 2\sqrt{2} \) are also irrational, proving our claim!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad