Pregunta
upstudy study bank question image url

\( a x - a - b x + b = 0 , a \neq b \)

Ask by Bush Boyd. in South Africa
Feb 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is \( x = 1 \).

Solución

We start with the equation:   a·x – a – b·x + b = 0 First, group the x terms and the constant terms:   (a·x – b·x) + (–a + b) = 0 Factor x out of the first group:   x(a – b) + (–a + b) = 0 Notice that (–a + b) is the same as –(a – b). Now the equation becomes:   x(a – b) – (a – b) = 0 Factor out (a – b):   (a – b)(x – 1) = 0 Since a ≠ b, (a – b) is not zero. Therefore, we must have:   x – 1 = 0 Thus, the solution is:   x = 1

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \( a x - a - b x + b = 0 \), we can rearrange it. Combine like terms: \( (a - b)x + (b - a) = 0 \). Factor out the constants: \( (a - b)(x - 1) = 0 \). Since \( a \neq b \), we can safely divide both sides by \( a - b \), leading to \( x - 1 = 0 \) and thus \( x = 1 \). Now, let's have some fun with this situation! Did you know that solving linear equations like this one is essential in various fields, from engineering design to finance? Imagine needing to calculate how to balance costs and resources for a project. A simple equation can save professionals hours of brainstorming and lead them to brilliant solutions! Common mistakes arise when variables and constants get mixed up in algebraic manipulations. One common blunder is forgetting to distribute correctly when combining terms or misplacing negative signs! Always double-check your steps; catching those little errors can make a big difference in finding the correct solution. Keep practicing, and you'll become an equation-solving wizard in no time!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad