opriate rule to differentiate \[ y=\left(7 x^{4}+4 c^{-x}\right) \sin (5 x) \] \[ \frac{d y}{d x}=\frac{1}{4} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To differentiate the given function \( y = (7x^4 + 4c^{-x}) \sin(5x) \), you’ll want to use the product rule, which states that if you have two functions multiplied together, you differentiate the first function and multiply by the second, then add the first function multiplied by the derivative of the second. The first part involves differentiating \( 7x^4 + 4c^{-x} \), leading to \( 28x^3 - 4c^{-x}\ln(c) \). The second part involves differentiating \( \sin(5x) \) to get \( 5\cos(5x) \). Combining these using the product rule results in: \[ \frac{dy}{dx} = (28x^3 - 4c^{-x}\ln(c))\sin(5x) + (7x^4 + 4c^{-x}) \cdot 5\cos(5x) \] Setting \( \frac{dy}{dx} = \frac{1}{4} \) can allow you to solve for specific values of \( x \). To interpret the differentiation process funnily, consider that differentiating is like giving your function a wake-up call – you reminded it of how quickly things are changing in the world of mathematics! Now it’s all energized, ready to strut its derivative dance moves!
preguntas relacionadas
