Pregunta
upstudy study bank question image url

Home \( > \) CC2 \( > \) Chapter \( 6> \) Lesson \( 6.2 .3> \) Problem 6-81 Solve each equation below for \( x \). Check your final answer. \( \begin{array}{ll}\text { a. } 4 x=6 x-14 & \text { b. } 3 x+5=50 \\ \boxtimes \square \operatorname{step} 1 \text { (a): }\end{array} \)

Ask by Adkins Perkins. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solutions: (a) \( x = 7 \) (b) \( x = 15 \)

Solución

Below are the steps to solve each equation and check your final answer. ───────────────────────────── Part (a): Solve 4x = 6x – 14 Step 1: Get all x terms on one side. Subtract 6x from both sides:   4x – 6x = 6x – 14 – 6x   –2x = –14 Step 2: Isolate x by dividing both sides by –2:   x = (–14)/(–2)   x = 7 Step 3: Check your answer by substituting x = 7 into the original equation:   Left side: 4(7) = 28   Right side: 6(7) – 14 = 42 – 14 = 28   Since 28 = 28, the solution x = 7 is correct. ───────────────────────────── Part (b): Solve 3x + 5 = 50 Step 1: Isolate the x term by subtracting 5 from both sides:   3x + 5 – 5 = 50 – 5   3x = 45 Step 2: Divide both sides by 3:   x = 45/3   x = 15 Step 3: Check your answer:   Substitute x = 15 into the original equation:   3(15) + 5 = 45 + 5 = 50   Since 50 = 50, the solution x = 15 is verified. ───────────────────────────── Final Answers: (a) x = 7 (b) x = 15

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's solve the first equation step by step and then tackle the second one! For equation (a) \( 4x = 6x - 14 \): Step 1: Start by isolating \( x \). Subtract \( 6x \) from both sides: \[ 4x - 6x = -14 \] This simplifies to: \[ -2x = -14 \] Step 2: Now, divide both sides by -2: \[ x = 7 \] To check, substitute \( x = 7 \) back into the original equation: \[ 4(7) = 6(7) - 14 \] This gives: \[ 28 = 42 - 14 \] Which simplifies to: \[ 28 = 28 \] (True!) Now, for equation (b) \( 3x + 5 = 50 \): Step 1: Isolate \( 3x \) by subtracting 5 from both sides: \[ 3x = 50 - 5 \] This simplifies to: \[ 3x = 45 \] Step 2: Now, divide both sides by 3: \[ x = 15 \] Check this by substituting \( x = 15 \): \[ 3(15) + 5 = 50 \] This gives: \[ 45 + 5 = 50 \] Which simplifies to: \[ 50 = 50 \] (True!) So, the solutions are \( x = 7 \) for (a) and \( x = 15 \) for (b). Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad