Pregunta
upstudy study bank question image url

Mamadou leans a 18 -foot ladder against a wall so that it forms an angle of \( 75^{\circ} \) with the ground. What's the horizontal distance betwee he base of the ladder and the bottom of the wall? Round your answer to the nearest tenth of a foot if necessary.

Ask by Mills Stanley. in the United States
Nov 06,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The horizontal distance is approximately 4.7 feet.

Solución

To find the horizontal distance between the base of the ladder and the bottom of the wall, we can use trigonometry. Specifically, we can use the cosine function, which relates the angle, the adjacent side (the horizontal distance), and the hypotenuse (the length of the ladder). Given: - Length of the ladder (hypotenuse) = 18 feet - Angle with the ground = \( 75^{\circ} \) The cosine of the angle is given by the formula: \[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \] In this case, the adjacent side is the horizontal distance \( d \), and the hypotenuse is 18 feet. Therefore, we can write: \[ \cos(75^{\circ}) = \frac{d}{18} \] To find \( d \), we rearrange the equation: \[ d = 18 \cdot \cos(75^{\circ}) \] Now, we need to calculate \( \cos(75^{\circ}) \). Using a calculator: \[ \cos(75^{\circ}) \approx 0.2588 \] Now we can substitute this value back into the equation for \( d \): \[ d \approx 18 \cdot 0.2588 \approx 4.6534 \] Rounding to the nearest tenth, we find: \[ d \approx 4.7 \text{ feet} \] Thus, the horizontal distance between the base of the ladder and the bottom of the wall is approximately \( \boxed{4.7} \) feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the horizontal distance between the base of the ladder and the wall, we can use trigonometry. Specifically, we use the cosine function, which relates the angle to the adjacent side (the horizontal distance) and the hypotenuse (the length of the ladder). The formula is: \[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \] Here, \( \theta = 75^{\circ} \) and the hypotenuse is 18 feet. Therefore, \[ \cos(75^{\circ}) = \frac{x}{18} \] Solving for x (the horizontal distance), we get: \[ x = 18 \times \cos(75^{\circ}) \] Calculating \( \cos(75^{\circ}) \): \[ \cos(75^{\circ}) \approx 0.2588 \] So, \[ x \approx 18 \times 0.2588 \approx 4.65 \] Rounding to the nearest tenth gives: The horizontal distance is approximately **4.7 feet**. Now go ahead—imagine that ladder reaching up to the sky, taking you to new heights, or at least to the roof for that extra adventure! Just think: that ladder is not just a piece of equipment; it’s a bridge between the ground and your lofty goals. 🚀

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad